GHSA-9c8h-vvrj-w2p8
Vulnerability from github
Published
2021-08-25 14:43
Modified
2024-11-13 16:24
Summary
Heap OOB in `RaggedGather`
Details

Impact

If the arguments to tf.raw_ops.RaggedGather don't determine a valid ragged tensor code can trigger a read from outside of bounds of heap allocated buffers.

```python import tensorflow as tf

tf.raw_ops.RaggedGather( params_nested_splits = [0,0,0], params_dense_values = [1,1], indices = [0,0,9,0,0], OUTPUT_RAGGED_RANK=0) ```

In debug mode, the same code triggers a CHECK failure.

The implementation directly reads the first dimension of a tensor shape before checking that said tensor has rank of at least 1 (i.e., it is not a scalar). Furthermore, the implementation does not check that the list given by params_nested_splits is not an empty list of tensors.

Patches

We have patched the issue in GitHub commit a2b743f6017d7b97af1fe49087ae15f0ac634373.

The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    }
  ],
  "aliases": [
    "CVE-2021-37641"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-125"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-08-23T18:35:20Z",
    "nvd_published_at": "2021-08-12T21:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nIf the arguments to `tf.raw_ops.RaggedGather` don\u0027t determine a valid ragged tensor code can trigger a read from outside of bounds of heap allocated buffers.\n                                                                                                                                                                                                                                                                                          \n```python\nimport tensorflow as tf\n\ntf.raw_ops.RaggedGather(\n  params_nested_splits = [0,0,0],\n  params_dense_values = [1,1],\n  indices = [0,0,9,0,0],\n  OUTPUT_RAGGED_RANK=0)\n```\n\nIn debug mode, the same code triggers a `CHECK` failure.\n\nThe [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/ragged_gather_op.cc#L70) directly reads the first dimension of a tensor shape before checking that said tensor has rank of at least 1 (i.e., it is not a scalar). Furthermore, the implementation does not check that the list given by `params_nested_splits` is not an empty list of tensors.\n\n### Patches\nWe have patched the issue in GitHub commit [a2b743f6017d7b97af1fe49087ae15f0ac634373](https://github.com/tensorflow/tensorflow/commit/a2b743f6017d7b97af1fe49087ae15f0ac634373).\n\nThe fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by members of the Aivul Team from Qihoo 360.",
  "id": "GHSA-9c8h-vvrj-w2p8",
  "modified": "2024-11-13T16:24:58Z",
  "published": "2021-08-25T14:43:59Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-9c8h-vvrj-w2p8"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-37641"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/a2b743f6017d7b97af1fe49087ae15f0ac634373"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-554.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-752.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-263.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:H/VI:N/VA:H/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Heap OOB in `RaggedGather`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.