CVE-2021-37690
Vulnerability from cvelistv5
Published
2021-08-12 23:10
Modified
2024-08-04 01:23
Severity ?
EPSS score ?
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions when running shape functions, some functions (such as `MutableHashTableShape`) produce extra output information in the form of a `ShapeAndType` struct. The shapes embedded in this struct are owned by an inference context that is cleaned up almost immediately; if the upstream code attempts to access this shape information, it can trigger a segfault. `ShapeRefiner` is mitigating this for normal output shapes by cloning them (and thus putting the newly created shape under ownership of an inference context that will not die), but we were not doing the same for shapes and types. This commit fixes that by doing similar logic on output shapes and types. We have patched the issue in GitHub commit ee119d4a498979525046fba1c3dd3f13a039fbb1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
References
Impacted products
Vendor | Product | Version | |
---|---|---|---|
▼ | tensorflow | tensorflow |
Version: >= 2.5.0, < 2.5.1 Version: >= 2.4.0, < 2.4.3 Version: < 2.3.4 |
|
{ "containers": { "adp": [ { "providerMetadata": { "dateUpdated": "2024-08-04T01:23:01.511Z", "orgId": "af854a3a-2127-422b-91ae-364da2661108", "shortName": "CVE" }, "references": [ { "tags": [ "x_refsource_CONFIRM", "x_transferred" ], "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg" }, { "tags": [ "x_refsource_MISC", "x_transferred" ], "url": "https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1" } ], "title": "CVE Program Container" } ], "cna": { "affected": [ { "product": "tensorflow", "vendor": "tensorflow", "versions": [ { "status": "affected", "version": "\u003e= 2.5.0, \u003c 2.5.1" }, { "status": "affected", "version": "\u003e= 2.4.0, \u003c 2.4.3" }, { "status": "affected", "version": "\u003c 2.3.4" } ] } ], "descriptions": [ { "lang": "en", "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions when running shape functions, some functions (such as `MutableHashTableShape`) produce extra output information in the form of a `ShapeAndType` struct. The shapes embedded in this struct are owned by an inference context that is cleaned up almost immediately; if the upstream code attempts to access this shape information, it can trigger a segfault. `ShapeRefiner` is mitigating this for normal output shapes by cloning them (and thus putting the newly created shape under ownership of an inference context that will not die), but we were not doing the same for shapes and types. This commit fixes that by doing similar logic on output shapes and types. We have patched the issue in GitHub commit ee119d4a498979525046fba1c3dd3f13a039fbb1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range." } ], "metrics": [ { "cvssV3_1": { "attackComplexity": "LOW", "attackVector": "LOCAL", "availabilityImpact": "HIGH", "baseScore": 6.6, "baseSeverity": "MEDIUM", "confidentialityImpact": "LOW", "integrityImpact": "LOW", "privilegesRequired": "LOW", "scope": "UNCHANGED", "userInteraction": "NONE", "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H", "version": "3.1" } } ], "problemTypes": [ { "descriptions": [ { "cweId": "CWE-416", "description": "CWE-416: Use After Free", "lang": "en", "type": "CWE" } ] } ], "providerMetadata": { "dateUpdated": "2021-08-12T23:10:15", "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa", "shortName": "GitHub_M" }, "references": [ { "tags": [ "x_refsource_CONFIRM" ], "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg" }, { "tags": [ "x_refsource_MISC" ], "url": "https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1" } ], "source": { "advisory": "GHSA-3hxh-8cp2-g4hg", "discovery": "UNKNOWN" }, "title": "Use after free and segfault in shape inference functions in TensorFlow", "x_legacyV4Record": { "CVE_data_meta": { "ASSIGNER": "security-advisories@github.com", "ID": "CVE-2021-37690", "STATE": "PUBLIC", "TITLE": "Use after free and segfault in shape inference functions in TensorFlow" }, "affects": { "vendor": { "vendor_data": [ { "product": { "product_data": [ { "product_name": "tensorflow", "version": { "version_data": [ { "version_value": "\u003e= 2.5.0, \u003c 2.5.1" }, { "version_value": "\u003e= 2.4.0, \u003c 2.4.3" }, { "version_value": "\u003c 2.3.4" } ] } } ] }, "vendor_name": "tensorflow" } ] } }, "data_format": "MITRE", "data_type": "CVE", "data_version": "4.0", "description": { "description_data": [ { "lang": "eng", "value": "TensorFlow is an end-to-end open source platform for machine learning. In affected versions when running shape functions, some functions (such as `MutableHashTableShape`) produce extra output information in the form of a `ShapeAndType` struct. The shapes embedded in this struct are owned by an inference context that is cleaned up almost immediately; if the upstream code attempts to access this shape information, it can trigger a segfault. `ShapeRefiner` is mitigating this for normal output shapes by cloning them (and thus putting the newly created shape under ownership of an inference context that will not die), but we were not doing the same for shapes and types. This commit fixes that by doing similar logic on output shapes and types. We have patched the issue in GitHub commit ee119d4a498979525046fba1c3dd3f13a039fbb1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range." } ] }, "impact": { "cvss": { "attackComplexity": "LOW", "attackVector": "LOCAL", "availabilityImpact": "HIGH", "baseScore": 6.6, "baseSeverity": "MEDIUM", "confidentialityImpact": "LOW", "integrityImpact": "LOW", "privilegesRequired": "LOW", "scope": "UNCHANGED", "userInteraction": "NONE", "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H", "version": "3.1" } }, "problemtype": { "problemtype_data": [ { "description": [ { "lang": "eng", "value": "CWE-416: Use After Free" } ] } ] }, "references": { "reference_data": [ { "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg", "refsource": "CONFIRM", "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg" }, { "name": "https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1", "refsource": "MISC", "url": "https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1" } ] }, "source": { "advisory": "GHSA-3hxh-8cp2-g4hg", "discovery": "UNKNOWN" } } } }, "cveMetadata": { "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa", "assignerShortName": "GitHub_M", "cveId": "CVE-2021-37690", "datePublished": "2021-08-12T23:10:16", "dateReserved": "2021-07-29T00:00:00", "dateUpdated": "2024-08-04T01:23:01.511Z", "state": "PUBLISHED" }, "dataType": "CVE_RECORD", "dataVersion": "5.1", "vulnerability-lookup:meta": { "nvd": "{\"cve\":{\"id\":\"CVE-2021-37690\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-08-13T00:15:07.170\",\"lastModified\":\"2024-11-21T06:15:42.697\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an end-to-end open source platform for machine learning. In affected versions when running shape functions, some functions (such as `MutableHashTableShape`) produce extra output information in the form of a `ShapeAndType` struct. The shapes embedded in this struct are owned by an inference context that is cleaned up almost immediately; if the upstream code attempts to access this shape information, it can trigger a segfault. `ShapeRefiner` is mitigating this for normal output shapes by cloning them (and thus putting the newly created shape under ownership of an inference context that will not die), but we were not doing the same for shapes and types. This commit fixes that by doing similar logic on output shapes and types. We have patched the issue in GitHub commit ee119d4a498979525046fba1c3dd3f13a039fbb1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;En las versiones afectadas cuando se ejecutan funciones de forma, algunas funciones (como \\\"MutableHashTableShape\\\") producen informaci\u00f3n de salida adicional en forma de una estructura\\\" ShapeAndType\\\".\u0026#xa0;Las formas insertadas en esta estructura pertenecen a un contexto de inferencia que se limpia casi de inmediato;\u0026#xa0;si el c\u00f3digo ascendente intenta acceder a esta informaci\u00f3n de forma, puede desencadenar un fallo de segmento.\u0026#xa0;\\\"ShapeRefiner\\\" est\u00e1 mitigando esto para las formas de salida normales al clonarlas (y as\u00ed poner la forma reci\u00e9n creada bajo la propiedad de un contexto de inferencia que no morir\u00e1), pero no est\u00e1bamos haciendo lo mismo para las formas y los tipos.\u0026#xa0;Este commit corrige eso al hacer una l\u00f3gica similar en formas y tipos de salida.\u0026#xa0;Hemos solucionado el problema en el commit de GitHub ee119d4a498979525046fba1c3dd3f13a039fbb1.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.6.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.5.1, TensorFlow versi\u00f3n 2.4.3 y TensorFlow versi\u00f3n 2.3.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan se encuentran en el rango admitido.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H\",\"baseScore\":6.6,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"LOW\",\"integrityImpact\":\"LOW\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":4.7},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H\",\"baseScore\":6.6,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"LOW\",\"integrityImpact\":\"LOW\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":4.7}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:P/I:P/A:P\",\"baseScore\":4.6,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"PARTIAL\",\"integrityImpact\":\"PARTIAL\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"MEDIUM\",\"exploitabilityScore\":3.9,\"impactScore\":6.4,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-416\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.4\",\"matchCriteriaId\":\"0F83C081-51CC-415F-A8C0-0A44C75E2CD6\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.4.0\",\"versionEndExcluding\":\"2.4.3\",\"matchCriteriaId\":\"BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*\",\"matchCriteriaId\":\"D03E99A7-4E3D-427D-A156-C0713E9FB02A\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*\",\"matchCriteriaId\":\"70FA6E48-6C57-40CA-809F-4E3D07CBF348\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*\",\"matchCriteriaId\":\"42187561-E491-434D-828C-F36701446634\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*\",\"matchCriteriaId\":\"C66B61C8-450A-4C5E-9174-F970D6DEE778\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Third Party Advisory\"]}]}}" } }
Loading…
Loading…
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.