CVE-2021-37690
Vulnerability from cvelistv5
Published
2021-08-12 23:10
Modified
2024-08-04 01:23
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions when running shape functions, some functions (such as `MutableHashTableShape`) produce extra output information in the form of a `ShapeAndType` struct. The shapes embedded in this struct are owned by an inference context that is cleaned up almost immediately; if the upstream code attempts to access this shape information, it can trigger a segfault. `ShapeRefiner` is mitigating this for normal output shapes by cloning them (and thus putting the newly created shape under ownership of an inference context that will not die), but we were not doing the same for shapes and types. This commit fixes that by doing similar logic on output shapes and types. We have patched the issue in GitHub commit ee119d4a498979525046fba1c3dd3f13a039fbb1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
   containers: {
      adp: [
         {
            providerMetadata: {
               dateUpdated: "2024-08-04T01:23:01.511Z",
               orgId: "af854a3a-2127-422b-91ae-364da2661108",
               shortName: "CVE",
            },
            references: [
               {
                  tags: [
                     "x_refsource_CONFIRM",
                     "x_transferred",
                  ],
                  url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg",
               },
               {
                  tags: [
                     "x_refsource_MISC",
                     "x_transferred",
                  ],
                  url: "https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1",
               },
            ],
            title: "CVE Program Container",
         },
      ],
      cna: {
         affected: [
            {
               product: "tensorflow",
               vendor: "tensorflow",
               versions: [
                  {
                     status: "affected",
                     version: ">= 2.5.0, < 2.5.1",
                  },
                  {
                     status: "affected",
                     version: ">= 2.4.0, < 2.4.3",
                  },
                  {
                     status: "affected",
                     version: "< 2.3.4",
                  },
               ],
            },
         ],
         descriptions: [
            {
               lang: "en",
               value: "TensorFlow is an end-to-end open source platform for machine learning. In affected versions when running shape functions, some functions (such as `MutableHashTableShape`) produce extra output information in the form of a `ShapeAndType` struct. The shapes embedded in this struct are owned by an inference context that is cleaned up almost immediately; if the upstream code attempts to access this shape information, it can trigger a segfault. `ShapeRefiner` is mitigating this for normal output shapes by cloning them (and thus putting the newly created shape under ownership of an inference context that will not die), but we were not doing the same for shapes and types. This commit fixes that by doing similar logic on output shapes and types. We have patched the issue in GitHub commit ee119d4a498979525046fba1c3dd3f13a039fbb1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.",
            },
         ],
         metrics: [
            {
               cvssV3_1: {
                  attackComplexity: "LOW",
                  attackVector: "LOCAL",
                  availabilityImpact: "HIGH",
                  baseScore: 6.6,
                  baseSeverity: "MEDIUM",
                  confidentialityImpact: "LOW",
                  integrityImpact: "LOW",
                  privilegesRequired: "LOW",
                  scope: "UNCHANGED",
                  userInteraction: "NONE",
                  vectorString: "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
                  version: "3.1",
               },
            },
         ],
         problemTypes: [
            {
               descriptions: [
                  {
                     cweId: "CWE-416",
                     description: "CWE-416: Use After Free",
                     lang: "en",
                     type: "CWE",
                  },
               ],
            },
         ],
         providerMetadata: {
            dateUpdated: "2021-08-12T23:10:15",
            orgId: "a0819718-46f1-4df5-94e2-005712e83aaa",
            shortName: "GitHub_M",
         },
         references: [
            {
               tags: [
                  "x_refsource_CONFIRM",
               ],
               url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg",
            },
            {
               tags: [
                  "x_refsource_MISC",
               ],
               url: "https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1",
            },
         ],
         source: {
            advisory: "GHSA-3hxh-8cp2-g4hg",
            discovery: "UNKNOWN",
         },
         title: "Use after free and segfault in shape inference functions in TensorFlow",
         x_legacyV4Record: {
            CVE_data_meta: {
               ASSIGNER: "security-advisories@github.com",
               ID: "CVE-2021-37690",
               STATE: "PUBLIC",
               TITLE: "Use after free and segfault in shape inference functions in TensorFlow",
            },
            affects: {
               vendor: {
                  vendor_data: [
                     {
                        product: {
                           product_data: [
                              {
                                 product_name: "tensorflow",
                                 version: {
                                    version_data: [
                                       {
                                          version_value: ">= 2.5.0, < 2.5.1",
                                       },
                                       {
                                          version_value: ">= 2.4.0, < 2.4.3",
                                       },
                                       {
                                          version_value: "< 2.3.4",
                                       },
                                    ],
                                 },
                              },
                           ],
                        },
                        vendor_name: "tensorflow",
                     },
                  ],
               },
            },
            data_format: "MITRE",
            data_type: "CVE",
            data_version: "4.0",
            description: {
               description_data: [
                  {
                     lang: "eng",
                     value: "TensorFlow is an end-to-end open source platform for machine learning. In affected versions when running shape functions, some functions (such as `MutableHashTableShape`) produce extra output information in the form of a `ShapeAndType` struct. The shapes embedded in this struct are owned by an inference context that is cleaned up almost immediately; if the upstream code attempts to access this shape information, it can trigger a segfault. `ShapeRefiner` is mitigating this for normal output shapes by cloning them (and thus putting the newly created shape under ownership of an inference context that will not die), but we were not doing the same for shapes and types. This commit fixes that by doing similar logic on output shapes and types. We have patched the issue in GitHub commit ee119d4a498979525046fba1c3dd3f13a039fbb1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.",
                  },
               ],
            },
            impact: {
               cvss: {
                  attackComplexity: "LOW",
                  attackVector: "LOCAL",
                  availabilityImpact: "HIGH",
                  baseScore: 6.6,
                  baseSeverity: "MEDIUM",
                  confidentialityImpact: "LOW",
                  integrityImpact: "LOW",
                  privilegesRequired: "LOW",
                  scope: "UNCHANGED",
                  userInteraction: "NONE",
                  vectorString: "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H",
                  version: "3.1",
               },
            },
            problemtype: {
               problemtype_data: [
                  {
                     description: [
                        {
                           lang: "eng",
                           value: "CWE-416: Use After Free",
                        },
                     ],
                  },
               ],
            },
            references: {
               reference_data: [
                  {
                     name: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg",
                     refsource: "CONFIRM",
                     url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg",
                  },
                  {
                     name: "https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1",
                     refsource: "MISC",
                     url: "https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1",
                  },
               ],
            },
            source: {
               advisory: "GHSA-3hxh-8cp2-g4hg",
               discovery: "UNKNOWN",
            },
         },
      },
   },
   cveMetadata: {
      assignerOrgId: "a0819718-46f1-4df5-94e2-005712e83aaa",
      assignerShortName: "GitHub_M",
      cveId: "CVE-2021-37690",
      datePublished: "2021-08-12T23:10:16",
      dateReserved: "2021-07-29T00:00:00",
      dateUpdated: "2024-08-04T01:23:01.511Z",
      state: "PUBLISHED",
   },
   dataType: "CVE_RECORD",
   dataVersion: "5.1",
   "vulnerability-lookup:meta": {
      nvd: "{\"cve\":{\"id\":\"CVE-2021-37690\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-08-13T00:15:07.170\",\"lastModified\":\"2024-11-21T06:15:42.697\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an end-to-end open source platform for machine learning. In affected versions when running shape functions, some functions (such as `MutableHashTableShape`) produce extra output information in the form of a `ShapeAndType` struct. The shapes embedded in this struct are owned by an inference context that is cleaned up almost immediately; if the upstream code attempts to access this shape information, it can trigger a segfault. `ShapeRefiner` is mitigating this for normal output shapes by cloning them (and thus putting the newly created shape under ownership of an inference context that will not die), but we were not doing the same for shapes and types. This commit fixes that by doing similar logic on output shapes and types. We have patched the issue in GitHub commit ee119d4a498979525046fba1c3dd3f13a039fbb1. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de código abierto de extremo a extremo para el aprendizaje automático.&#xa0;En las versiones afectadas cuando se ejecutan funciones de forma, algunas funciones (como \\\"MutableHashTableShape\\\") producen información de salida adicional en forma de una estructura\\\" ShapeAndType\\\".&#xa0;Las formas insertadas en esta estructura pertenecen a un contexto de inferencia que se limpia casi de inmediato;&#xa0;si el código ascendente intenta acceder a esta información de forma, puede desencadenar un fallo de segmento.&#xa0;\\\"ShapeRefiner\\\" está mitigando esto para las formas de salida normales al clonarlas (y así poner la forma recién creada bajo la propiedad de un contexto de inferencia que no morirá), pero no estábamos haciendo lo mismo para las formas y los tipos.&#xa0;Este commit corrige eso al hacer una lógica similar en formas y tipos de salida.&#xa0;Hemos solucionado el problema en el commit de GitHub ee119d4a498979525046fba1c3dd3f13a039fbb1.&#xa0;La corrección será incluida en TensorFlow versión 2.6.0.&#xa0;También seleccionaremos este commit en TensorFlow versión 2.5.1, TensorFlow versión 2.4.3 y TensorFlow versión 2.3.4, ya que estos también están afectados y aún se encuentran en el rango admitido.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H\",\"baseScore\":6.6,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"LOW\",\"integrityImpact\":\"LOW\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":4.7},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:H\",\"baseScore\":6.6,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"LOW\",\"integrityImpact\":\"LOW\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":4.7}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:P/I:P/A:P\",\"baseScore\":4.6,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"PARTIAL\",\"integrityImpact\":\"PARTIAL\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"MEDIUM\",\"exploitabilityScore\":3.9,\"impactScore\":6.4,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-416\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.4\",\"matchCriteriaId\":\"0F83C081-51CC-415F-A8C0-0A44C75E2CD6\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.4.0\",\"versionEndExcluding\":\"2.4.3\",\"matchCriteriaId\":\"BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*\",\"matchCriteriaId\":\"D03E99A7-4E3D-427D-A156-C0713E9FB02A\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*\",\"matchCriteriaId\":\"70FA6E48-6C57-40CA-809F-4E3D07CBF348\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*\",\"matchCriteriaId\":\"42187561-E491-434D-828C-F36701446634\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*\",\"matchCriteriaId\":\"C66B61C8-450A-4C5E-9174-F970D6DEE778\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/ee119d4a498979525046fba1c3dd3f13a039fbb1\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3hxh-8cp2-g4hg\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Third Party Advisory\"]}]}}",
   },
}


Log in or create an account to share your comment.

Security Advisory comment format.

This schema specifies the format of a comment related to a security advisory.

UUIDv4 of the comment
UUIDv4 of the Vulnerability-Lookup instance
When the comment was created originally
When the comment was last updated
Title of the comment
Description of the comment
The identifier of the vulnerability (CVE ID, GHSA-ID, PYSEC ID, etc.).



Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.