pysec-2021-183
Vulnerability from pysec
Published
2021-05-14 20:15
Modified
2021-08-27 03:22
Details
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger an integer division by zero undefined behavior in tf.raw_ops.QuantizedBiasAdd
. This is because the implementation of the Eigen kernel(https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Aliases
{ "affected": [ { "package": { "ecosystem": "PyPI", "name": "tensorflow", "purl": "pkg:pypi/tensorflow" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "67784700869470d65d5f2ef20aeb5e97c31673cb" } ], "repo": "https://github.com/tensorflow/tensorflow", "type": "GIT" }, { "events": [ { "introduced": "0" }, { "fixed": "2.2.0rc0" }, { "introduced": "2.2.0" }, { "fixed": "2.3.0rc0" }, { "introduced": "2.3.0" }, { "fixed": "2.3.4" }, { "introduced": "2.4.0" }, { "fixed": "2.4.3" } ], "type": "ECOSYSTEM" } ], "versions": [ "0.12.0", "0.12.0rc0", "0.12.0rc1", "0.12.1", "1.0.0", "1.0.1", "1.1.0", "1.1.0rc0", "1.1.0rc1", "1.1.0rc2", "1.10.0", "1.10.0rc0", "1.10.0rc1", "1.10.1", "1.11.0", "1.11.0rc0", "1.11.0rc1", "1.11.0rc2", "1.12.0", "1.12.0rc0", "1.12.0rc1", "1.12.0rc2", "1.12.2", "1.12.3", "1.13.0rc0", "1.13.0rc1", "1.13.0rc2", "1.13.1", "1.13.2", "1.14.0", "1.14.0rc0", "1.14.0rc1", "1.15.0", "1.15.0rc0", "1.15.0rc1", "1.15.0rc2", "1.15.0rc3", "1.15.2", "1.15.3", "1.15.4", "1.15.5", "1.2.0", "1.2.0rc0", "1.2.0rc1", "1.2.0rc2", "1.2.1", "1.3.0", "1.3.0rc0", "1.3.0rc1", "1.3.0rc2", "1.4.0", "1.4.0rc0", "1.4.0rc1", "1.4.1", "1.5.0", "1.5.0rc0", "1.5.0rc1", "1.5.1", "1.6.0", "1.6.0rc0", "1.6.0rc1", "1.7.0", "1.7.0rc0", "1.7.0rc1", "1.7.1", "1.8.0", "1.8.0rc0", "1.8.0rc1", "1.9.0", "1.9.0rc0", "1.9.0rc1", "1.9.0rc2", "2.0.0", "2.0.0a0", "2.0.0b0", "2.0.0b1", "2.0.0rc0", "2.0.0rc1", "2.0.0rc2", "2.0.1", "2.0.2", "2.0.3", "2.0.4", "2.1.0", "2.1.0rc0", "2.1.0rc1", "2.1.0rc2", "2.1.1", "2.1.2", "2.1.3", "2.1.4", "2.2.0", "2.2.1", "2.2.2", "2.2.3", "2.3.0", "2.3.1", "2.3.2", "2.3.3", "2.4.0", "2.4.1", "2.4.2" ] } ], "aliases": [ "CVE-2021-29546", "GHSA-m34j-p8rj-wjxq" ], "details": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger an integer division by zero undefined behavior in `tf.raw_ops.QuantizedBiasAdd`. This is because the implementation of the Eigen kernel(https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.", "id": "PYSEC-2021-183", "modified": "2021-08-27T03:22:29.613359Z", "published": "2021-05-14T20:15:00Z", "references": [ { "type": "FIX", "url": "https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb" }, { "type": "ADVISORY", "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq" } ] }
Loading…
Loading…
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.