GHSA-M34J-P8RJ-WJXQ

Vulnerability from github – Published: 2021-05-21 14:23 – Updated: 2024-10-30 23:10
VLAI?
Summary
Division by 0 in `QuantizedBiasAdd`
Details

Impact

An attacker can trigger an integer division by zero undefined behavior in tf.raw_ops.QuantizedBiasAdd:

import tensorflow as tf

input_tensor = tf.constant([], shape=[0, 0, 0, 0], dtype=tf.quint8)
bias = tf.constant([], shape=[0], dtype=tf.quint8)
min_input = tf.constant(-10.0, dtype=tf.float32)
max_input = tf.constant(-10.0, dtype=tf.float32)
min_bias = tf.constant(-10.0, dtype=tf.float32)
max_bias = tf.constant(-10.0, dtype=tf.float32)

tf.raw_ops.QuantizedBiasAdd(input=input_tensor, bias=bias, min_input=min_input,
                            max_input=max_input, min_bias=min_bias,
                            max_bias=max_bias, out_type=tf.qint32)

This is because the implementation of the Eigen kernel does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero:

template <typename T1, typename T2, typename T3>
void QuantizedAddUsingEigen(const Eigen::ThreadPoolDevice& device,
                            const Tensor& input, float input_min,
                            float input_max, const Tensor& smaller_input,
                            float smaller_input_min, float smaller_input_max,
                            Tensor* output, float* output_min,
                            float* output_max) {
  ...
  const int64 input_element_count = input.NumElements();
  const int64 smaller_input_element_count = smaller_input.NumElements();
  ...
  bcast[0] = input_element_count / smaller_input_element_count;
  ...
}

This integral division by 0 is undefined behavior.

Patches

We have patched the issue in GitHub commit 67784700869470d65d5f2ef20aeb5e97c31673cb.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

Show details on source website

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2021-29546"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-369"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-05-18T21:45:01Z",
    "nvd_published_at": "2021-05-14T20:15:00Z",
    "severity": "LOW"
  },
  "details": "### Impact\nAn attacker can trigger an integer division by zero undefined behavior in `tf.raw_ops.QuantizedBiasAdd`:\n\n```python\nimport tensorflow as tf\n\ninput_tensor = tf.constant([], shape=[0, 0, 0, 0], dtype=tf.quint8)\nbias = tf.constant([], shape=[0], dtype=tf.quint8)\nmin_input = tf.constant(-10.0, dtype=tf.float32)\nmax_input = tf.constant(-10.0, dtype=tf.float32)\nmin_bias = tf.constant(-10.0, dtype=tf.float32)\nmax_bias = tf.constant(-10.0, dtype=tf.float32)\n\ntf.raw_ops.QuantizedBiasAdd(input=input_tensor, bias=bias, min_input=min_input,\n                            max_input=max_input, min_bias=min_bias,\n                            max_bias=max_bias, out_type=tf.qint32)\n```\n\nThis is because the [implementation of the Eigen kernel](https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero:\n\n```cc\ntemplate \u003ctypename T1, typename T2, typename T3\u003e\nvoid QuantizedAddUsingEigen(const Eigen::ThreadPoolDevice\u0026 device,\n                            const Tensor\u0026 input, float input_min,\n                            float input_max, const Tensor\u0026 smaller_input,\n                            float smaller_input_min, float smaller_input_max,\n                            Tensor* output, float* output_min,\n                            float* output_max) {\n  ...\n  const int64 input_element_count = input.NumElements();\n  const int64 smaller_input_element_count = smaller_input.NumElements();\n  ...\n  bcast[0] = input_element_count / smaller_input_element_count;\n  ...\n}\n```\n\nThis integral division by 0 is undefined behavior.\n\n### Patches\nWe have patched the issue in GitHub commit [67784700869470d65d5f2ef20aeb5e97c31673cb](https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.",
  "id": "GHSA-m34j-p8rj-wjxq",
  "modified": "2024-10-30T23:10:12Z",
  "published": "2021-05-21T14:23:28Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29546"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-474.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-672.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-183.yaml"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Division by 0 in `QuantizedBiasAdd`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…