ghsa-xmq7-7fxm-rr79
Vulnerability from github
Published
2020-09-25 18:28
Modified
2024-10-28 21:23
Summary
Denial of Service in Tensorflow
Details

Impact

By controlling the fill argument of tf.strings.as_string, a malicious attacker is able to trigger a format string vulnerability due to the way the internal format use in a printf call is constructed: https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/core/kernels/as_string_op.cc#L68-L74

This can result in unexpected output: python In [1]: tf.strings.as_string(input=[1234], width=6, fill='-') Out[1]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['1234 '], dtype=object)> In [2]: tf.strings.as_string(input=[1234], width=6, fill='+') Out[2]: <tf.Tensor: shape=(1,), dtype=string, numpy=array([' +1234'], dtype=object)> In [3]: tf.strings.as_string(input=[1234], width=6, fill="h") Out[3]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['%6d'], dtype=object)> In [4]: tf.strings.as_string(input=[1234], width=6, fill="d") Out[4]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['12346d'], dtype=object)> In [5]: tf.strings.as_string(input=[1234], width=6, fill="o") Out[5]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['23226d'], dtype=object)> In [6]: tf.strings.as_string(input=[1234], width=6, fill="x") Out[6]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['4d26d'], dtype=object)> In [7]: tf.strings.as_string(input=[1234], width=6, fill="g") Out[7]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['8.67458e-3116d'], dtype=object)> In [8]: tf.strings.as_string(input=[1234], width=6, fill="a") Out[8]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['0x0.00ff7eebb4d4p-10226d'], dtype=object)> In [9]: tf.strings.as_string(input=[1234], width=6, fill="c") Out[9]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['\xd26d'], dtype=object)> In [10]: tf.strings.as_string(input=[1234], width=6, fill="p") Out[10]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['0x4d26d'], dtype=object)> In [11]: tf.strings.as_string(input=[1234], width=6, fill='m') Out[11]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['Success6d'], dtype=object)>

However, passing in n or s results in segmentation fault.

Patches

We have patched the issue in 33be22c65d86256e6826666662e40dbdfe70ee83 and will release patch releases for all versions between 1.15 and 2.3.

We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "1.15.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.0.0"
            },
            {
              "fixed": "2.0.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.1.0"
            },
            {
              "fixed": "2.1.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.2.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.3.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "1.15.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.0.0"
            },
            {
              "fixed": "2.0.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.1.0"
            },
            {
              "fixed": "2.1.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.2.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.3.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "1.15.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.0.0"
            },
            {
              "fixed": "2.0.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.1.0"
            },
            {
              "fixed": "2.1.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.2.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.3.0"
      ]
    }
  ],
  "aliases": [
    "CVE-2020-15203"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-134",
      "CWE-20"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2020-09-25T17:34:02Z",
    "nvd_published_at": "2020-09-25T19:15:00Z",
    "severity": "HIGH"
  },
  "details": "### Impact\nBy controlling the `fill` argument of [`tf.strings.as_string`](https://www.tensorflow.org/api_docs/python/tf/strings/as_string), a malicious attacker is able to trigger a format string vulnerability due to the way the internal format use in a `printf` call is constructed: https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/core/kernels/as_string_op.cc#L68-L74\n\nThis can result in unexpected output:\n```python\nIn [1]: tf.strings.as_string(input=[1234], width=6, fill=\u0027-\u0027)                                                                     \nOut[1]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00271234  \u0027], dtype=object)\u003e                                              \nIn [2]: tf.strings.as_string(input=[1234], width=6, fill=\u0027+\u0027)                                                                     \nOut[2]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u0027 +1234\u0027], dtype=object)\u003e \nIn [3]: tf.strings.as_string(input=[1234], width=6, fill=\"h\")                                                                     \nOut[3]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u0027%6d\u0027], dtype=object)\u003e \nIn [4]: tf.strings.as_string(input=[1234], width=6, fill=\"d\")                                                                     \nOut[4]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u002712346d\u0027], dtype=object)\u003e \nIn [5]: tf.strings.as_string(input=[1234], width=6, fill=\"o\")\nOut[5]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u002723226d\u0027], dtype=object)\u003e\nIn [6]: tf.strings.as_string(input=[1234], width=6, fill=\"x\")\nOut[6]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00274d26d\u0027], dtype=object)\u003e\nIn [7]: tf.strings.as_string(input=[1234], width=6, fill=\"g\")\nOut[7]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00278.67458e-3116d\u0027], dtype=object)\u003e\nIn [8]: tf.strings.as_string(input=[1234], width=6, fill=\"a\")\nOut[8]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00270x0.00ff7eebb4d4p-10226d\u0027], dtype=object)\u003e\nIn [9]: tf.strings.as_string(input=[1234], width=6, fill=\"c\")\nOut[9]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u0027\\xd26d\u0027], dtype=object)\u003e\nIn [10]: tf.strings.as_string(input=[1234], width=6, fill=\"p\")\nOut[10]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00270x4d26d\u0027], dtype=object)\u003e\nIn [11]: tf.strings.as_string(input=[1234], width=6, fill=\u0027m\u0027) \nOut[11]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u0027Success6d\u0027], dtype=object)\u003e\n```\n\nHowever, passing in `n` or `s` results in segmentation fault.\n\n### Patches\nWe have patched the issue in 33be22c65d86256e6826666662e40dbdfe70ee83 and will release patch releases for all versions between 1.15 and 2.3.\n\nWe recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by members of the Aivul Team from Qihoo 360.",
  "id": "GHSA-xmq7-7fxm-rr79",
  "modified": "2024-10-28T21:23:19Z",
  "published": "2020-09-25T18:28:37Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xmq7-7fxm-rr79"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2020-15203"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/33be22c65d86256e6826666662e40dbdfe70ee83"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2020-283.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2020-318.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2020-126.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "type": "WEB",
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Denial of Service in Tensorflow"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.