CVE-2025-62495 (GCVE-0-2025-62495)
Vulnerability from cvelistv5
Published
2025-10-16 15:51
Modified
2025-10-16 17:42
Severity ?
VLAI Severity ?
EPSS score ?
CWE
- CWE-191 - Integer Underflow (Wrap or Wraparound)
Summary
An integer overflow vulnerability exists in the QuickJS regular expression engine (libregexp) due to an inconsistent representation of the bytecode buffer size.
* The regular expression bytecode is stored in a DynBuf structure, which correctly uses a $\text{size}\_\text{t}$ (an unsigned type, typically 64-bit) for its size member.
* However, several functions, such as re_emit_op_u32 and other internal parsing routines, incorrectly cast or store this DynBuf $\text{size}\_\text{t}$ value into a signed int (typically 32-bit).
* When a large or complex regular expression (such as those generated by a recursive pattern in a Proof-of-Concept) causes the bytecode size to exceed $2^{31}$ bytes (the maximum positive value for a signed 32-bit integer), the size value wraps around, resulting in a negative integer when stored in the int variable (Integer Overflow).
* This negative value is subsequently used in offset calculations. For example, within functions like re_parse_disjunction, the negative size is used to compute an offset (pos) for patching a jump instruction.
* This negative offset is then incorrectly added to the buffer pointer (s->byte\_code.buf + pos), leading to an out-of-bounds write on the first line of the snippet below:
put_u32(s->byte_code.buf + pos, len);
References
{ "containers": { "adp": [ { "metrics": [ { "other": { "content": { "id": "CVE-2025-62495", "options": [ { "Exploitation": "poc" }, { "Automatable": "no" }, { "Technical Impact": "total" } ], "role": "CISA Coordinator", "timestamp": "2025-10-16T17:40:14.439633Z", "version": "2.0.3" }, "type": "ssvc" } } ], "providerMetadata": { "dateUpdated": "2025-10-16T17:42:15.865Z", "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0", "shortName": "CISA-ADP" }, "title": "CISA ADP Vulnrichment" } ], "cna": { "affected": [ { "collectionURL": "https://bellard.org/quickjs/", "defaultStatus": "unaffected", "packageName": "libregexp", "product": "QuickJS", "vendor": "QuickJS", "versions": [ { "lessThan": "2025-09-13", "status": "affected", "version": "2025-04-26", "versionType": "date" } ] } ], "credits": [ { "lang": "en", "type": "finder", "value": "Google Big Sleep" } ], "datePublic": "2025-07-24T22:00:00.000Z", "descriptions": [ { "lang": "en", "supportingMedia": [ { "base64": false, "type": "text/html", "value": "\u003cp\u003eAn integer overflow vulnerability exists in the QuickJS regular expression engine (\u003ccode\u003elibregexp\u003c/code\u003e) due to an \u003cb\u003einconsistent representation of the bytecode buffer size\u003c/b\u003e.\u003c/p\u003e\u003col\u003e\u003cli\u003e\u003cp\u003eThe regular expression bytecode is stored in a \u003ccode\u003eDynBuf\u003c/code\u003e structure, which correctly uses a $\\text{size}\\_\\text{t}$ (an unsigned type, typically 64-bit) for its \u003ccode\u003esize\u003c/code\u003e member.\u003c/p\u003e\u003c/li\u003e\u003cli\u003e\u003cp\u003eHowever, several functions, such as \u003ccode\u003ere_emit_op_u32\u003c/code\u003e and other internal parsing routines, incorrectly cast or store this \u003ccode\u003eDynBuf\u003c/code\u003e $\\text{size}\\_\\text{t}$ value into a signed \u003cb\u003eint\u003c/b\u003e (typically 32-bit).\u003c/p\u003e\u003c/li\u003e\u003cli\u003e\u003cp\u003eWhen a large or complex regular expression (such as those generated by a recursive pattern in a Proof-of-Concept) causes the bytecode size to exceed \u003cb\u003e$2^{31}$ bytes\u003c/b\u003e (the maximum positive value for a signed 32-bit integer), the size value wraps around, resulting in a \u003cb\u003enegative integer\u003c/b\u003e when stored in the \u003ccode\u003eint\u003c/code\u003e variable (Integer Overflow).\u003c/p\u003e\u003c/li\u003e\u003cli\u003e\u003cp\u003eThis negative value is subsequently used in offset calculations. For example, within functions like \u003ccode\u003ere_parse_disjunction\u003c/code\u003e, the negative size is used to compute an offset (\u003ccode\u003epos\u003c/code\u003e) for patching a jump instruction.\u003c/p\u003e\u003c/li\u003e\u003cli\u003e\u003cp\u003eThis negative offset is then incorrectly added to the buffer pointer (\u003ccode\u003es-\u0026gt;byte\\_code.buf + pos\u003c/code\u003e), leading to an \u003cb\u003eout-of-bounds write\u003c/b\u003e on the first line of the snippet below:\u003c/p\u003e\u003cblockquote\u003e\u003cp\u003e\u003ccode\u003eput_u32(s-\u0026gt;byte_code.buf + pos, len);\u003c/code\u003e\u003c/p\u003e\u003c/blockquote\u003e\u003c/li\u003e\u003c/ol\u003e\u003cbr\u003e" } ], "value": "An integer overflow vulnerability exists in the QuickJS regular expression engine (libregexp) due to an inconsistent representation of the bytecode buffer size.\n\n * The regular expression bytecode is stored in a DynBuf structure, which correctly uses a $\\text{size}\\_\\text{t}$ (an unsigned type, typically 64-bit) for its size member.\n\n\n * However, several functions, such as re_emit_op_u32 and other internal parsing routines, incorrectly cast or store this DynBuf $\\text{size}\\_\\text{t}$ value into a signed int (typically 32-bit).\n\n\n * When a large or complex regular expression (such as those generated by a recursive pattern in a Proof-of-Concept) causes the bytecode size to exceed $2^{31}$ bytes (the maximum positive value for a signed 32-bit integer), the size value wraps around, resulting in a negative integer when stored in the int variable (Integer Overflow).\n\n\n * This negative value is subsequently used in offset calculations. For example, within functions like re_parse_disjunction, the negative size is used to compute an offset (pos) for patching a jump instruction.\n\n\n * This negative offset is then incorrectly added to the buffer pointer (s-\u003ebyte\\_code.buf + pos), leading to an out-of-bounds write on the first line of the snippet below:\n\nput_u32(s-\u003ebyte_code.buf + pos, len);" } ], "impacts": [ { "capecId": "CAPEC-175", "descriptions": [ { "lang": "en", "value": "CAPEC-175 Code Inclusion" } ] } ], "metrics": [ { "cvssV4_0": { "Automatable": "NOT_DEFINED", "Recovery": "NOT_DEFINED", "Safety": "NOT_DEFINED", "attackComplexity": "HIGH", "attackRequirements": "PRESENT", "attackVector": "ADJACENT", "baseScore": 7.1, "baseSeverity": "HIGH", "privilegesRequired": "LOW", "providerUrgency": "NOT_DEFINED", "subAvailabilityImpact": "LOW", "subConfidentialityImpact": "HIGH", "subIntegrityImpact": "HIGH", "userInteraction": "PASSIVE", "valueDensity": "NOT_DEFINED", "vectorString": "CVSS:4.0/AV:A/AC:H/AT:P/PR:L/UI:P/VC:H/VI:H/VA:L/SC:H/SI:H/SA:L", "version": "4.0", "vulnAvailabilityImpact": "LOW", "vulnConfidentialityImpact": "HIGH", "vulnIntegrityImpact": "HIGH", "vulnerabilityResponseEffort": "NOT_DEFINED" }, "format": "CVSS", "scenarios": [ { "lang": "en", "value": "GENERAL" } ] } ], "problemTypes": [ { "descriptions": [ { "cweId": "CWE-191", "description": "CWE-191 Integer Underflow (Wrap or Wraparound)", "lang": "en", "type": "CWE" } ] } ], "providerMetadata": { "dateUpdated": "2025-10-16T15:51:58.953Z", "orgId": "14ed7db2-1595-443d-9d34-6215bf890778", "shortName": "Google" }, "references": [ { "url": "https://bellard.org/quickjs/Changelog" }, { "url": "https://issuetracker.google.com/434196926" } ], "source": { "discovery": "UNKNOWN" }, "title": "Type confusion in string addition in QuickJS", "x_generator": { "engine": "Vulnogram 0.2.0" } } }, "cveMetadata": { "assignerOrgId": "14ed7db2-1595-443d-9d34-6215bf890778", "assignerShortName": "Google", "cveId": "CVE-2025-62495", "datePublished": "2025-10-16T15:51:58.953Z", "dateReserved": "2025-10-15T08:47:41.878Z", "dateUpdated": "2025-10-16T17:42:15.865Z", "state": "PUBLISHED" }, "dataType": "CVE_RECORD", "dataVersion": "5.1", "vulnerability-lookup:meta": { "nvd": "{\"cve\":{\"id\":\"CVE-2025-62495\",\"sourceIdentifier\":\"cve-coordination@google.com\",\"published\":\"2025-10-16T16:15:40.110\",\"lastModified\":\"2025-10-16T16:15:40.110\",\"vulnStatus\":\"Received\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"An integer overflow vulnerability exists in the QuickJS regular expression engine (libregexp) due to an inconsistent representation of the bytecode buffer size.\\n\\n * The regular expression bytecode is stored in a DynBuf structure, which correctly uses a $\\\\text{size}\\\\_\\\\text{t}$ (an unsigned type, typically 64-bit) for its size member.\\n\\n\\n * However, several functions, such as re_emit_op_u32 and other internal parsing routines, incorrectly cast or store this DynBuf $\\\\text{size}\\\\_\\\\text{t}$ value into a signed int (typically 32-bit).\\n\\n\\n * When a large or complex regular expression (such as those generated by a recursive pattern in a Proof-of-Concept) causes the bytecode size to exceed $2^{31}$ bytes (the maximum positive value for a signed 32-bit integer), the size value wraps around, resulting in a negative integer when stored in the int variable (Integer Overflow).\\n\\n\\n * This negative value is subsequently used in offset calculations. For example, within functions like re_parse_disjunction, the negative size is used to compute an offset (pos) for patching a jump instruction.\\n\\n\\n * This negative offset is then incorrectly added to the buffer pointer (s-\u003ebyte\\\\_code.buf + pos), leading to an out-of-bounds write on the first line of the snippet below:\\n\\nput_u32(s-\u003ebyte_code.buf + pos, len);\"}],\"metrics\":{\"cvssMetricV40\":[{\"source\":\"cve-coordination@google.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"4.0\",\"vectorString\":\"CVSS:4.0/AV:A/AC:H/AT:P/PR:L/UI:P/VC:H/VI:H/VA:L/SC:H/SI:H/SA:L/E:X/CR:X/IR:X/AR:X/MAV:X/MAC:X/MAT:X/MPR:X/MUI:X/MVC:X/MVI:X/MVA:X/MSC:X/MSI:X/MSA:X/S:X/AU:X/R:X/V:X/RE:X/U:X\",\"baseScore\":7.1,\"baseSeverity\":\"HIGH\",\"attackVector\":\"ADJACENT\",\"attackComplexity\":\"HIGH\",\"attackRequirements\":\"PRESENT\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"PASSIVE\",\"vulnConfidentialityImpact\":\"HIGH\",\"vulnIntegrityImpact\":\"HIGH\",\"vulnAvailabilityImpact\":\"LOW\",\"subConfidentialityImpact\":\"HIGH\",\"subIntegrityImpact\":\"HIGH\",\"subAvailabilityImpact\":\"LOW\",\"exploitMaturity\":\"NOT_DEFINED\",\"confidentialityRequirement\":\"NOT_DEFINED\",\"integrityRequirement\":\"NOT_DEFINED\",\"availabilityRequirement\":\"NOT_DEFINED\",\"modifiedAttackVector\":\"NOT_DEFINED\",\"modifiedAttackComplexity\":\"NOT_DEFINED\",\"modifiedAttackRequirements\":\"NOT_DEFINED\",\"modifiedPrivilegesRequired\":\"NOT_DEFINED\",\"modifiedUserInteraction\":\"NOT_DEFINED\",\"modifiedVulnConfidentialityImpact\":\"NOT_DEFINED\",\"modifiedVulnIntegrityImpact\":\"NOT_DEFINED\",\"modifiedVulnAvailabilityImpact\":\"NOT_DEFINED\",\"modifiedSubConfidentialityImpact\":\"NOT_DEFINED\",\"modifiedSubIntegrityImpact\":\"NOT_DEFINED\",\"modifiedSubAvailabilityImpact\":\"NOT_DEFINED\",\"Safety\":\"NOT_DEFINED\",\"Automatable\":\"NOT_DEFINED\",\"Recovery\":\"NOT_DEFINED\",\"valueDensity\":\"NOT_DEFINED\",\"vulnerabilityResponseEffort\":\"NOT_DEFINED\",\"providerUrgency\":\"NOT_DEFINED\"}}]},\"weaknesses\":[{\"source\":\"cve-coordination@google.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-191\"}]}],\"references\":[{\"url\":\"https://bellard.org/quickjs/Changelog\",\"source\":\"cve-coordination@google.com\"},{\"url\":\"https://issuetracker.google.com/434196926\",\"source\":\"cve-coordination@google.com\"}]}}", "vulnrichment": { "containers": "{\"adp\": [{\"title\": \"CISA ADP Vulnrichment\", \"metrics\": [{\"other\": {\"type\": \"ssvc\", \"content\": {\"id\": \"CVE-2025-62495\", \"role\": \"CISA Coordinator\", \"options\": [{\"Exploitation\": \"poc\"}, {\"Automatable\": \"no\"}, {\"Technical Impact\": \"total\"}], \"version\": \"2.0.3\", \"timestamp\": \"2025-10-16T17:40:14.439633Z\"}}}], \"providerMetadata\": {\"orgId\": \"134c704f-9b21-4f2e-91b3-4a467353bcc0\", \"shortName\": \"CISA-ADP\", \"dateUpdated\": \"2025-10-16T17:41:50.821Z\"}}], \"cna\": {\"title\": \"Type confusion in string addition in QuickJS\", \"source\": {\"discovery\": \"UNKNOWN\"}, \"credits\": [{\"lang\": \"en\", \"type\": \"finder\", \"value\": \"Google Big Sleep\"}], \"impacts\": [{\"capecId\": \"CAPEC-175\", \"descriptions\": [{\"lang\": \"en\", \"value\": \"CAPEC-175 Code Inclusion\"}]}], \"metrics\": [{\"format\": \"CVSS\", \"cvssV4_0\": {\"Safety\": \"NOT_DEFINED\", \"version\": \"4.0\", \"Recovery\": \"NOT_DEFINED\", \"baseScore\": 7.1, \"Automatable\": \"NOT_DEFINED\", \"attackVector\": \"ADJACENT\", \"baseSeverity\": \"HIGH\", \"valueDensity\": \"NOT_DEFINED\", \"vectorString\": \"CVSS:4.0/AV:A/AC:H/AT:P/PR:L/UI:P/VC:H/VI:H/VA:L/SC:H/SI:H/SA:L\", \"providerUrgency\": \"NOT_DEFINED\", \"userInteraction\": \"PASSIVE\", \"attackComplexity\": \"HIGH\", \"attackRequirements\": \"PRESENT\", \"privilegesRequired\": \"LOW\", \"subIntegrityImpact\": \"HIGH\", \"vulnIntegrityImpact\": \"HIGH\", \"subAvailabilityImpact\": \"LOW\", \"vulnAvailabilityImpact\": \"LOW\", \"subConfidentialityImpact\": \"HIGH\", \"vulnConfidentialityImpact\": \"HIGH\", \"vulnerabilityResponseEffort\": \"NOT_DEFINED\"}, \"scenarios\": [{\"lang\": \"en\", \"value\": \"GENERAL\"}]}], \"affected\": [{\"vendor\": \"QuickJS\", \"product\": \"QuickJS\", \"versions\": [{\"status\": \"affected\", \"version\": \"2025-04-26\", \"lessThan\": \"2025-09-13\", \"versionType\": \"date\"}], \"packageName\": \"libregexp\", \"collectionURL\": \"https://bellard.org/quickjs/\", \"defaultStatus\": \"unaffected\"}], \"datePublic\": \"2025-07-24T22:00:00.000Z\", \"references\": [{\"url\": \"https://bellard.org/quickjs/Changelog\"}, {\"url\": \"https://issuetracker.google.com/434196926\"}], \"x_generator\": {\"engine\": \"Vulnogram 0.2.0\"}, \"descriptions\": [{\"lang\": \"en\", \"value\": \"An integer overflow vulnerability exists in the QuickJS regular expression engine (libregexp) due to an inconsistent representation of the bytecode buffer size.\\n\\n * The regular expression bytecode is stored in a DynBuf structure, which correctly uses a $\\\\text{size}\\\\_\\\\text{t}$ (an unsigned type, typically 64-bit) for its size member.\\n\\n\\n * However, several functions, such as re_emit_op_u32 and other internal parsing routines, incorrectly cast or store this DynBuf $\\\\text{size}\\\\_\\\\text{t}$ value into a signed int (typically 32-bit).\\n\\n\\n * When a large or complex regular expression (such as those generated by a recursive pattern in a Proof-of-Concept) causes the bytecode size to exceed $2^{31}$ bytes (the maximum positive value for a signed 32-bit integer), the size value wraps around, resulting in a negative integer when stored in the int variable (Integer Overflow).\\n\\n\\n * This negative value is subsequently used in offset calculations. For example, within functions like re_parse_disjunction, the negative size is used to compute an offset (pos) for patching a jump instruction.\\n\\n\\n * This negative offset is then incorrectly added to the buffer pointer (s-\u003ebyte\\\\_code.buf + pos), leading to an out-of-bounds write on the first line of the snippet below:\\n\\nput_u32(s-\u003ebyte_code.buf + pos, len);\", \"supportingMedia\": [{\"type\": \"text/html\", \"value\": \"\u003cp\u003eAn integer overflow vulnerability exists in the QuickJS regular expression engine (\u003ccode\u003elibregexp\u003c/code\u003e) due to an \u003cb\u003einconsistent representation of the bytecode buffer size\u003c/b\u003e.\u003c/p\u003e\u003col\u003e\u003cli\u003e\u003cp\u003eThe regular expression bytecode is stored in a \u003ccode\u003eDynBuf\u003c/code\u003e structure, which correctly uses a $\\\\text{size}\\\\_\\\\text{t}$ (an unsigned type, typically 64-bit) for its \u003ccode\u003esize\u003c/code\u003e member.\u003c/p\u003e\u003c/li\u003e\u003cli\u003e\u003cp\u003eHowever, several functions, such as \u003ccode\u003ere_emit_op_u32\u003c/code\u003e and other internal parsing routines, incorrectly cast or store this \u003ccode\u003eDynBuf\u003c/code\u003e $\\\\text{size}\\\\_\\\\text{t}$ value into a signed \u003cb\u003eint\u003c/b\u003e (typically 32-bit).\u003c/p\u003e\u003c/li\u003e\u003cli\u003e\u003cp\u003eWhen a large or complex regular expression (such as those generated by a recursive pattern in a Proof-of-Concept) causes the bytecode size to exceed \u003cb\u003e$2^{31}$ bytes\u003c/b\u003e (the maximum positive value for a signed 32-bit integer), the size value wraps around, resulting in a \u003cb\u003enegative integer\u003c/b\u003e when stored in the \u003ccode\u003eint\u003c/code\u003e variable (Integer Overflow).\u003c/p\u003e\u003c/li\u003e\u003cli\u003e\u003cp\u003eThis negative value is subsequently used in offset calculations. For example, within functions like \u003ccode\u003ere_parse_disjunction\u003c/code\u003e, the negative size is used to compute an offset (\u003ccode\u003epos\u003c/code\u003e) for patching a jump instruction.\u003c/p\u003e\u003c/li\u003e\u003cli\u003e\u003cp\u003eThis negative offset is then incorrectly added to the buffer pointer (\u003ccode\u003es-\u0026gt;byte\\\\_code.buf + pos\u003c/code\u003e), leading to an \u003cb\u003eout-of-bounds write\u003c/b\u003e on the first line of the snippet below:\u003c/p\u003e\u003cblockquote\u003e\u003cp\u003e\u003ccode\u003eput_u32(s-\u0026gt;byte_code.buf + pos, len);\u003c/code\u003e\u003c/p\u003e\u003c/blockquote\u003e\u003c/li\u003e\u003c/ol\u003e\u003cbr\u003e\", \"base64\": false}]}], \"problemTypes\": [{\"descriptions\": [{\"lang\": \"en\", \"type\": \"CWE\", \"cweId\": \"CWE-191\", \"description\": \"CWE-191 Integer Underflow (Wrap or Wraparound)\"}]}], \"providerMetadata\": {\"orgId\": \"14ed7db2-1595-443d-9d34-6215bf890778\", \"shortName\": \"Google\", \"dateUpdated\": \"2025-10-16T15:51:58.953Z\"}}}", "cveMetadata": "{\"cveId\": \"CVE-2025-62495\", \"state\": \"PUBLISHED\", \"dateUpdated\": \"2025-10-16T17:42:15.865Z\", \"dateReserved\": \"2025-10-15T08:47:41.878Z\", \"assignerOrgId\": \"14ed7db2-1595-443d-9d34-6215bf890778\", \"datePublished\": \"2025-10-16T15:51:58.953Z\", \"assignerShortName\": \"Google\"}", "dataType": "CVE_RECORD", "dataVersion": "5.1" } } }
Loading…
Loading…
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.
Loading…