CVE-2021-29547 (GCVE-0-2021-29547)
Vulnerability from cvelistv5 – Published: 2021-05-14 19:10 – Updated: 2024-08-03 22:11
VLAI?
Title
Heap out of bounds in `QuantizedBatchNormWithGlobalNormalization`
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a segfault and denial of service via accessing data outside of bounds in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) assumes the inputs are not empty. If any of these inputs is empty, `.flat<T>()` is an empty buffer, so accessing the element at index 0 is accessing data outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Severity ?
CWE
- CWE-125 - Out-of-bounds Read
Assigner
References
| URL | Tags | |||||||
|---|---|---|---|---|---|---|---|---|
|
||||||||
Impacted products
| Vendor | Product | Version | ||
|---|---|---|---|---|
| tensorflow | tensorflow |
Affected:
< 2.1.4
Affected: >= 2.2.0, < 2.2.3 Affected: >= 2.3.0, < 2.3.3 Affected: >= 2.4.0, < 2.4.2 |
{
"containers": {
"adp": [
{
"providerMetadata": {
"dateUpdated": "2024-08-03T22:11:05.426Z",
"orgId": "af854a3a-2127-422b-91ae-364da2661108",
"shortName": "CVE"
},
"references": [
{
"tags": [
"x_refsource_MISC",
"x_transferred"
],
"url": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b"
},
{
"tags": [
"x_refsource_CONFIRM",
"x_transferred"
],
"url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4fg4-p75j-w5xj"
}
],
"title": "CVE Program Container"
}
],
"cna": {
"affected": [
{
"product": "tensorflow",
"vendor": "tensorflow",
"versions": [
{
"status": "affected",
"version": "\u003c 2.1.4"
},
{
"status": "affected",
"version": "\u003e= 2.2.0, \u003c 2.2.3"
},
{
"status": "affected",
"version": "\u003e= 2.3.0, \u003c 2.3.3"
},
{
"status": "affected",
"version": "\u003e= 2.4.0, \u003c 2.4.2"
}
]
}
],
"descriptions": [
{
"lang": "en",
"value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a segfault and denial of service via accessing data outside of bounds in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) assumes the inputs are not empty. If any of these inputs is empty, `.flat\u003cT\u003e()` is an empty buffer, so accessing the element at index 0 is accessing data outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
}
],
"metrics": [
{
"cvssV3_1": {
"attackComplexity": "HIGH",
"attackVector": "LOCAL",
"availabilityImpact": "LOW",
"baseScore": 2.5,
"baseSeverity": "LOW",
"confidentialityImpact": "NONE",
"integrityImpact": "NONE",
"privilegesRequired": "LOW",
"scope": "UNCHANGED",
"userInteraction": "NONE",
"vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
"version": "3.1"
}
}
],
"problemTypes": [
{
"descriptions": [
{
"cweId": "CWE-125",
"description": "CWE-125: Out-of-bounds Read",
"lang": "en",
"type": "CWE"
}
]
}
],
"providerMetadata": {
"dateUpdated": "2021-05-14T19:10:50",
"orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
"shortName": "GitHub_M"
},
"references": [
{
"tags": [
"x_refsource_MISC"
],
"url": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b"
},
{
"tags": [
"x_refsource_CONFIRM"
],
"url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4fg4-p75j-w5xj"
}
],
"source": {
"advisory": "GHSA-4fg4-p75j-w5xj",
"discovery": "UNKNOWN"
},
"title": "Heap out of bounds in `QuantizedBatchNormWithGlobalNormalization`",
"x_legacyV4Record": {
"CVE_data_meta": {
"ASSIGNER": "security-advisories@github.com",
"ID": "CVE-2021-29547",
"STATE": "PUBLIC",
"TITLE": "Heap out of bounds in `QuantizedBatchNormWithGlobalNormalization`"
},
"affects": {
"vendor": {
"vendor_data": [
{
"product": {
"product_data": [
{
"product_name": "tensorflow",
"version": {
"version_data": [
{
"version_value": "\u003c 2.1.4"
},
{
"version_value": "\u003e= 2.2.0, \u003c 2.2.3"
},
{
"version_value": "\u003e= 2.3.0, \u003c 2.3.3"
},
{
"version_value": "\u003e= 2.4.0, \u003c 2.4.2"
}
]
}
}
]
},
"vendor_name": "tensorflow"
}
]
}
},
"data_format": "MITRE",
"data_type": "CVE",
"data_version": "4.0",
"description": {
"description_data": [
{
"lang": "eng",
"value": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a segfault and denial of service via accessing data outside of bounds in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) assumes the inputs are not empty. If any of these inputs is empty, `.flat\u003cT\u003e()` is an empty buffer, so accessing the element at index 0 is accessing data outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
}
]
},
"impact": {
"cvss": {
"attackComplexity": "HIGH",
"attackVector": "LOCAL",
"availabilityImpact": "LOW",
"baseScore": 2.5,
"baseSeverity": "LOW",
"confidentialityImpact": "NONE",
"integrityImpact": "NONE",
"privilegesRequired": "LOW",
"scope": "UNCHANGED",
"userInteraction": "NONE",
"vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
"version": "3.1"
}
},
"problemtype": {
"problemtype_data": [
{
"description": [
{
"lang": "eng",
"value": "CWE-125: Out-of-bounds Read"
}
]
}
]
},
"references": {
"reference_data": [
{
"name": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b",
"refsource": "MISC",
"url": "https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b"
},
{
"name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4fg4-p75j-w5xj",
"refsource": "CONFIRM",
"url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4fg4-p75j-w5xj"
}
]
},
"source": {
"advisory": "GHSA-4fg4-p75j-w5xj",
"discovery": "UNKNOWN"
}
}
}
},
"cveMetadata": {
"assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
"assignerShortName": "GitHub_M",
"cveId": "CVE-2021-29547",
"datePublished": "2021-05-14T19:10:50",
"dateReserved": "2021-03-30T00:00:00",
"dateUpdated": "2024-08-03T22:11:05.426Z",
"state": "PUBLISHED"
},
"dataType": "CVE_RECORD",
"dataVersion": "5.1",
"vulnerability-lookup:meta": {
"fkie_nvd": {
"configurations": "[{\"nodes\": [{\"operator\": \"OR\", \"negate\": false, \"cpeMatch\": [{\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionEndExcluding\": \"2.1.4\", \"matchCriteriaId\": \"323ABCCE-24EB-47CC-87F6-48C101477587\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.2.0\", \"versionEndExcluding\": \"2.2.3\", \"matchCriteriaId\": \"64ABA90C-0649-4BB0-89C9-83C14BBDCC0F\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.3.0\", \"versionEndExcluding\": \"2.3.3\", \"matchCriteriaId\": \"0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.4.0\", \"versionEndExcluding\": \"2.4.2\", \"matchCriteriaId\": \"8259531B-A8AC-4F8B-B60F-B69DE4767C03\"}]}]}]",
"descriptions": "[{\"lang\": \"en\", \"value\": \"TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a segfault and denial of service via accessing data outside of bounds in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) assumes the inputs are not empty. If any of these inputs is empty, `.flat\u003cT\u003e()` is an empty buffer, so accessing the element at index 0 is accessing data outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\"}, {\"lang\": \"es\", \"value\": \"TensorFlow es una plataforma de c\\u00f3digo abierto de extremo a extremo para el aprendizaje autom\\u00e1tico.\u0026#xa0;Un atacante puede causar un fallo secundario y una denegaci\\u00f3n de servicio por medio del acceso a datos fuera de l\\u00edmites en \\\"tf.raw_ops.QuantizedBatchNormWithGlobalNormalization\\\".\u0026#xa0;Esto es debido a que la implementaci\\u00f3n (https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) asume que las entradas no est\\u00e1n vac\\u00edas.\u0026#xa0;Si alguna de estas entradas est\\u00e1 vac\\u00eda, \\\".flat(T)()\\\" es un b\\u00fafer vac\\u00edo, por lo que acceder al elemento en el \\u00edndice 0 es acceder a datos fuera de l\\u00edmites.\u0026#xa0;La correcci\\u00f3n ser\\u00e1 incluida en TensorFlow versi\\u00f3n 2.5.0.\u0026#xa0;Tambi\\u00e9n seleccionaremos este commit en TensorFlow versi\\u00f3n 2.4.2, TensorFlow versi\\u00f3n 2.3.3, TensorFlow versi\\u00f3n 2.2.3 y TensorFlow versi\\u00f3n 2.1.4, ya que estos tambi\\u00e9n est\\u00e1n afectados y a\\u00fan est\\u00e1n en el rango compatible\"}]",
"id": "CVE-2021-29547",
"lastModified": "2024-11-21T06:01:21.313",
"metrics": "{\"cvssMetricV31\": [{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L\", \"baseScore\": 2.5, \"baseSeverity\": \"LOW\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"HIGH\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"LOW\"}, \"exploitabilityScore\": 1.0, \"impactScore\": 1.4}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\", \"baseScore\": 5.5, \"baseSeverity\": \"MEDIUM\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 1.8, \"impactScore\": 3.6}], \"cvssMetricV2\": [{\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"2.0\", \"vectorString\": \"AV:L/AC:L/Au:N/C:N/I:N/A:P\", \"baseScore\": 2.1, \"accessVector\": \"LOCAL\", \"accessComplexity\": \"LOW\", \"authentication\": \"NONE\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"PARTIAL\"}, \"baseSeverity\": \"LOW\", \"exploitabilityScore\": 3.9, \"impactScore\": 2.9, \"acInsufInfo\": false, \"obtainAllPrivilege\": false, \"obtainUserPrivilege\": false, \"obtainOtherPrivilege\": false, \"userInteractionRequired\": false}]}",
"published": "2021-05-14T20:15:12.763",
"references": "[{\"url\": \"https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4fg4-p75j-w5xj\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Exploit\", \"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4fg4-p75j-w5xj\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Exploit\", \"Patch\", \"Third Party Advisory\"]}]",
"sourceIdentifier": "security-advisories@github.com",
"vulnStatus": "Modified",
"weaknesses": "[{\"source\": \"security-advisories@github.com\", \"type\": \"Primary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-125\"}]}]"
},
"nvd": "{\"cve\":{\"id\":\"CVE-2021-29547\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-05-14T20:15:12.763\",\"lastModified\":\"2024-11-21T06:01:21.313\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an end-to-end open source platform for machine learning. An attacker can cause a segfault and denial of service via accessing data outside of bounds in `tf.raw_ops.QuantizedBatchNormWithGlobalNormalization`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) assumes the inputs are not empty. If any of these inputs is empty, `.flat\u003cT\u003e()` is an empty buffer, so accessing the element at index 0 is accessing data outside of bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un atacante puede causar un fallo secundario y una denegaci\u00f3n de servicio por medio del acceso a datos fuera de l\u00edmites en \\\"tf.raw_ops.QuantizedBatchNormWithGlobalNormalization\\\".\u0026#xa0;Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/55a97caa9e99c7f37a0bbbeb414dc55553d3ae7f/tensorflow/core/kernels/quantized_batch_norm_op.cc#L176-L189) asume que las entradas no est\u00e1n vac\u00edas.\u0026#xa0;Si alguna de estas entradas est\u00e1 vac\u00eda, \\\".flat(T)()\\\" es un b\u00fafer vac\u00edo, por lo que acceder al elemento en el \u00edndice 0 es acceder a datos fuera de l\u00edmites.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L\",\"baseScore\":2.5,\"baseSeverity\":\"LOW\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.0,\"impactScore\":1.4},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:N/I:N/A:P\",\"baseScore\":2.1,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"LOW\",\"exploitabilityScore\":3.9,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-125\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"2.1.4\",\"matchCriteriaId\":\"323ABCCE-24EB-47CC-87F6-48C101477587\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.2.0\",\"versionEndExcluding\":\"2.2.3\",\"matchCriteriaId\":\"64ABA90C-0649-4BB0-89C9-83C14BBDCC0F\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.3\",\"matchCriteriaId\":\"0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.4.0\",\"versionEndExcluding\":\"2.4.2\",\"matchCriteriaId\":\"8259531B-A8AC-4F8B-B60F-B69DE4767C03\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4fg4-p75j-w5xj\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/d6ed5bcfe1dcab9e85a4d39931bd18d99018e75b\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4fg4-p75j-w5xj\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}"
}
}
Loading…
Loading…
Sightings
| Author | Source | Type | Date |
|---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or observed by the user.
- Confirmed: The vulnerability has been validated from an analyst's perspective.
- Published Proof of Concept: A public proof of concept is available for this vulnerability.
- Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
- Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
- Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
- Not confirmed: The user expressed doubt about the validity of the vulnerability.
- Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.
Loading…
Loading…