GHSA-hpv4-7p9c-mvfr
Vulnerability from github
Published
2021-08-25 14:43
Modified
2024-11-13 17:26
Summary
Heap buffer overflow in `FractionalAvgPoolGrad`
Details

Impact

The implementation for tf.raw_ops.FractionalAvgPoolGrad can be tricked into accessing data outside of bounds of heap allocated buffers:

```python import tensorflow as tf

tf.raw_ops.FractionalAvgPoolGrad( orig_input_tensor_shape=[0,1,2,3], out_backprop = np.array([[[[541],[541]],[[541],[541]]]]), row_pooling_sequence=[0, 0, 0, 0, 0], col_pooling_sequence=[-2, 0, 0, 2, 0], overlapping=True) ```

The implementation does not validate that the input tensor is non-empty. Thus, code constructs an empty EigenDoubleMatrixMap and then accesses this buffer with indices that are outside of the empty area.

Patches

We have patched the issue in GitHub commit 0f931751fb20f565c4e94aa6df58d54a003cdb30.

The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    }
  ],
  "aliases": [
    "CVE-2021-37651"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-125",
      "CWE-787"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-08-23T23:20:28Z",
    "nvd_published_at": "2021-08-12T21:15:00Z",
    "severity": "HIGH"
  },
  "details": "### Impact\nThe implementation for `tf.raw_ops.FractionalAvgPoolGrad` can be tricked into accessing data outside of bounds of heap allocated buffers:\n\n```python\nimport tensorflow as tf\n\ntf.raw_ops.FractionalAvgPoolGrad(\n  orig_input_tensor_shape=[0,1,2,3],\n  out_backprop = np.array([[[[541],[541]],[[541],[541]]]]),\n  row_pooling_sequence=[0, 0, 0, 0, 0],\n  col_pooling_sequence=[-2, 0, 0, 2, 0],\n  overlapping=True)\n```\n\nThe [implementation](https://github.com/tensorflow/tensorflow/blob/f24faa153ad31a4b51578f8181d3aaab77a1ddeb/tensorflow/core/kernels/fractional_avg_pool_op.cc#L205) does not validate that the input tensor is non-empty. Thus, code constructs an empty `EigenDoubleMatrixMap` and then accesses this buffer with indices that are outside of the empty area.\n\n### Patches\nWe have patched the issue in GitHub commit [0f931751fb20f565c4e94aa6df58d54a003cdb30](https://github.com/tensorflow/tensorflow/commit/0f931751fb20f565c4e94aa6df58d54a003cdb30).\n\nThe fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by members of the Aivul Team from Qihoo 360.",
  "id": "GHSA-hpv4-7p9c-mvfr",
  "modified": "2024-11-13T17:26:29Z",
  "published": "2021-08-25T14:43:21Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hpv4-7p9c-mvfr"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-37651"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/0f931751fb20f565c4e94aa6df58d54a003cdb30"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-564.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-762.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-273.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:N",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:H/VI:H/VA:N/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Heap buffer overflow in `FractionalAvgPoolGrad`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.