GHSA-c545-c4f9-rf6v
Vulnerability from github
Published
2021-08-25 14:40
Modified
2024-11-13 21:18
Summary
Heap OOB in TFLite
Details

Impact

TFLite's expand_dims.cc contains a vulnerability which allows reading one element outside of bounds of heap allocated data:

```cc if (axis < 0) { axis = input_dims.size + 1 + axis; }
TF_LITE_ENSURE(context, axis <= input_dims.size);

TfLiteIntArray* output_dims = TfLiteIntArrayCreate(input_dims.size + 1); for (int i = 0; i < output_dims->size; ++i) { if (i < axis) { output_dims->data[i] = input_dims.data[i]; } else if (i == axis) { output_dims->data[i] = 1; } else { output_dims->data[i] = input_dims.data[i - 1]; } } ```

If axis is a large negative value (e.g., -100000), then after the first if it would still be negative. The check following the if statement will pass and the for loop would read one element before the start of input_dims.data (when i = 0).

Patches

We have patched the issue in GitHub commit d94ffe08a65400f898241c0374e9edc6fa8ed257.

The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang of Baidu Security.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    }
  ],
  "aliases": [
    "CVE-2021-37685"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-125"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-08-24T17:15:34Z",
    "nvd_published_at": "2021-08-12T23:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nTFLite\u0027s [`expand_dims.cc`](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/expand_dims.cc#L36-L50) contains a vulnerability which allows reading one element outside of bounds of heap allocated data:\n\n```cc\n  if (axis \u003c 0) { \n    axis = input_dims.size + 1 + axis;\n  }   \n  TF_LITE_ENSURE(context, axis \u003c= input_dims.size);\n\n  TfLiteIntArray* output_dims = TfLiteIntArrayCreate(input_dims.size + 1);\n  for (int i = 0; i \u003c output_dims-\u003esize; ++i) {\n    if (i \u003c axis) {\n      output_dims-\u003edata[i] = input_dims.data[i];\n    } else if (i == axis) {\n      output_dims-\u003edata[i] = 1;\n    } else {\n      output_dims-\u003edata[i] = input_dims.data[i - 1];\n    }\n  }\n```\n\nIf `axis` is a large negative value (e.g., `-100000`), then after the first `if` it would still be negative. The check following the `if` statement will pass and the `for` loop would read one element before the start of `input_dims.data` (when `i = 0`).\n\n### Patches\nWe have patched the issue in GitHub commit [d94ffe08a65400f898241c0374e9edc6fa8ed257](https://github.com/tensorflow/tensorflow/commit/d94ffe08a65400f898241c0374e9edc6fa8ed257).\n\nThe fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Yakun Zhang of Baidu Security.",
  "id": "GHSA-c545-c4f9-rf6v",
  "modified": "2024-11-13T21:18:37Z",
  "published": "2021-08-25T14:40:09Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c545-c4f9-rf6v"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-37685"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/d94ffe08a65400f898241c0374e9edc6fa8ed257"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-598.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-796.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-307.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/lite/kernels/expand_dims.cc#L36-L50"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:N",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:H/VI:N/VA:N/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Heap OOB in TFLite"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.