CVE-2021-29569 (GCVE-0-2021-29569)

Vulnerability from cvelistv5 – Published: 2021-05-14 19:16 – Updated: 2024-08-03 22:11
VLAI?
Title
Heap out of bounds read in `RequantizationRange`
Summary
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) assumes that the `input_min` and `input_max` tensors have at least one element, as it accesses the first element in two arrays. If the tensors are empty, `.flat<T>()` is an empty object, backed by an empty array. Hence, accesing even the 0th element is a read outside the bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CWE
Assigner
Impacted products
Vendor Product Version
tensorflow tensorflow Affected: < 2.1.4
Affected: >= 2.2.0, < 2.2.3
Affected: >= 2.3.0, < 2.3.3
Affected: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.766Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3h8m-483j-7xxm"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ef0c008ee84bad91ec6725ddc42091e19a30cf0e"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) assumes that the `input_min` and `input_max` tensors have at least one element, as it accesses the first element in two arrays. If the tensors are empty, `.flat\u003cT\u003e()` is an empty object, backed by an empty array. Hence, accesing even the 0th element is a read outside the bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125: Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:16:36",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3h8m-483j-7xxm"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ef0c008ee84bad91ec6725ddc42091e19a30cf0e"
        }
      ],
      "source": {
        "advisory": "GHSA-3h8m-483j-7xxm",
        "discovery": "UNKNOWN"
      },
      "title": "Heap out of bounds read in `RequantizationRange`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29569",
          "STATE": "PUBLIC",
          "TITLE": "Heap out of bounds read in `RequantizationRange`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) assumes that the `input_min` and `input_max` tensors have at least one element, as it accesses the first element in two arrays. If the tensors are empty, `.flat\u003cT\u003e()` is an empty object, backed by an empty array. Hence, accesing even the 0th element is a read outside the bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125: Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3h8m-483j-7xxm",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3h8m-483j-7xxm"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ef0c008ee84bad91ec6725ddc42091e19a30cf0e",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ef0c008ee84bad91ec6725ddc42091e19a30cf0e"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-3h8m-483j-7xxm",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29569",
    "datePublished": "2021-05-14T19:16:36",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.766Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "fkie_nvd": {
      "configurations": "[{\"nodes\": [{\"operator\": \"OR\", \"negate\": false, \"cpeMatch\": [{\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionEndExcluding\": \"2.1.4\", \"matchCriteriaId\": \"323ABCCE-24EB-47CC-87F6-48C101477587\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.2.0\", \"versionEndExcluding\": \"2.2.3\", \"matchCriteriaId\": \"64ABA90C-0649-4BB0-89C9-83C14BBDCC0F\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.3.0\", \"versionEndExcluding\": \"2.3.3\", \"matchCriteriaId\": \"0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.4.0\", \"versionEndExcluding\": \"2.4.2\", \"matchCriteriaId\": \"8259531B-A8AC-4F8B-B60F-B69DE4767C03\"}]}]}]",
      "descriptions": "[{\"lang\": \"en\", \"value\": \"TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) assumes that the `input_min` and `input_max` tensors have at least one element, as it accesses the first element in two arrays. If the tensors are empty, `.flat\u003cT\u003e()` is an empty object, backed by an empty array. Hence, accesing even the 0th element is a read outside the bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\"}, {\"lang\": \"es\", \"value\": \"TensorFlow es una plataforma de c\\u00f3digo abierto de extremo a extremo para el aprendizaje autom\\u00e1tico.\u0026#xa0;La implementaci\\u00f3n de \\\"tf.raw_ops.MaxPoolGradWithArgmax\\\" puede causar una lectura fuera de l\\u00edmites de los datos asignados a la pila si el atacante suministra entradas especialmente dise\\u00f1adas.\u0026#xa0;La implementaci\\u00f3n (https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) asume que los tensores \\\"input_min\\\" y\\\" input_max\\\" tienen al menos un elemento, a medida que accede al primer elemento en dos matrices.\u0026#xa0;Si los tensores est\\u00e1n vac\\u00edos, \\\".flat (T) ()\\\" es un objeto vac\\u00edo, respaldado por una matriz vac\\u00eda.\u0026#xa0;Por lo tanto, acceder incluso al elemento 0 es una lectura fuera de l\\u00edmites.\u0026#xa0;La correcci\\u00f3n ser\\u00e1 incluida en TensorFlow versi\\u00f3n 2.5.0.\u0026#xa0;Tambi\\u00e9n seleccionaremos este commit en TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 y TensorFlow 2.1.4\"}]",
      "id": "CVE-2021-29569",
      "lastModified": "2024-11-21T06:01:24.117",
      "metrics": "{\"cvssMetricV31\": [{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L\", \"baseScore\": 2.5, \"baseSeverity\": \"LOW\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"HIGH\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"LOW\"}, \"exploitabilityScore\": 1.0, \"impactScore\": 1.4}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H\", \"baseScore\": 7.1, \"baseSeverity\": \"HIGH\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"HIGH\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 1.8, \"impactScore\": 5.2}], \"cvssMetricV2\": [{\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"2.0\", \"vectorString\": \"AV:L/AC:L/Au:N/C:P/I:N/A:P\", \"baseScore\": 3.6, \"accessVector\": \"LOCAL\", \"accessComplexity\": \"LOW\", \"authentication\": \"NONE\", \"confidentialityImpact\": \"PARTIAL\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"PARTIAL\"}, \"baseSeverity\": \"LOW\", \"exploitabilityScore\": 3.9, \"impactScore\": 4.9, \"acInsufInfo\": false, \"obtainAllPrivilege\": false, \"obtainUserPrivilege\": false, \"obtainOtherPrivilege\": false, \"userInteractionRequired\": false}]}",
      "published": "2021-05-14T20:15:13.790",
      "references": "[{\"url\": \"https://github.com/tensorflow/tensorflow/commit/ef0c008ee84bad91ec6725ddc42091e19a30cf0e\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3h8m-483j-7xxm\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Exploit\", \"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/ef0c008ee84bad91ec6725ddc42091e19a30cf0e\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3h8m-483j-7xxm\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Exploit\", \"Patch\", \"Third Party Advisory\"]}]",
      "sourceIdentifier": "security-advisories@github.com",
      "vulnStatus": "Modified",
      "weaknesses": "[{\"source\": \"security-advisories@github.com\", \"type\": \"Primary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-125\"}]}]"
    },
    "nvd": "{\"cve\":{\"id\":\"CVE-2021-29569\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-05-14T20:15:13.790\",\"lastModified\":\"2024-11-21T06:01:24.117\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) assumes that the `input_min` and `input_max` tensors have at least one element, as it accesses the first element in two arrays. If the tensors are empty, `.flat\u003cT\u003e()` is an empty object, backed by an empty array. Hence, accesing even the 0th element is a read outside the bounds. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;La implementaci\u00f3n de \\\"tf.raw_ops.MaxPoolGradWithArgmax\\\" puede causar una lectura fuera de l\u00edmites de los datos asignados a la pila si el atacante suministra entradas especialmente dise\u00f1adas.\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/ac328eaa3870491ababc147822cd04e91a790643/tensorflow/core/kernels/requantization_range_op.cc#L49-L50) asume que los tensores \\\"input_min\\\" y\\\" input_max\\\" tienen al menos un elemento, a medida que accede al primer elemento en dos matrices.\u0026#xa0;Si los tensores est\u00e1n vac\u00edos, \\\".flat (T) ()\\\" es un objeto vac\u00edo, respaldado por una matriz vac\u00eda.\u0026#xa0;Por lo tanto, acceder incluso al elemento 0 es una lectura fuera de l\u00edmites.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 y TensorFlow 2.1.4\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L\",\"baseScore\":2.5,\"baseSeverity\":\"LOW\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.0,\"impactScore\":1.4},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:N/A:H\",\"baseScore\":7.1,\"baseSeverity\":\"HIGH\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":5.2}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:P/I:N/A:P\",\"baseScore\":3.6,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"PARTIAL\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"LOW\",\"exploitabilityScore\":3.9,\"impactScore\":4.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-125\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"2.1.4\",\"matchCriteriaId\":\"323ABCCE-24EB-47CC-87F6-48C101477587\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.2.0\",\"versionEndExcluding\":\"2.2.3\",\"matchCriteriaId\":\"64ABA90C-0649-4BB0-89C9-83C14BBDCC0F\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.3\",\"matchCriteriaId\":\"0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.4.0\",\"versionEndExcluding\":\"2.4.2\",\"matchCriteriaId\":\"8259531B-A8AC-4F8B-B60F-B69DE4767C03\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/ef0c008ee84bad91ec6725ddc42091e19a30cf0e\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3h8m-483j-7xxm\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/ef0c008ee84bad91ec6725ddc42091e19a30cf0e\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-3h8m-483j-7xxm\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…