CVE-2021-37660
Vulnerability from cvelistv5
Published
2021-08-12 17:35
Modified
2024-08-04 01:23
Severity ?
EPSS score ?
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a floating point exception by calling inplace operations with crafted arguments that would result in a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/inplace_ops.cc#L283) has a logic error: it should skip processing if `x` and `v` are empty but the code uses `||` instead of `&&`. We have patched the issue in GitHub commit e86605c0a336c088b638da02135ea6f9f6753618. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
References
Impacted products
Vendor | Product | Version | |
---|---|---|---|
▼ | tensorflow | tensorflow |
Version: >= 2.5.0, < 2.5.1 Version: >= 2.4.0, < 2.4.3 Version: < 2.3.4 |
|
{ containers: { adp: [ { providerMetadata: { dateUpdated: "2024-08-04T01:23:01.434Z", orgId: "af854a3a-2127-422b-91ae-364da2661108", shortName: "CVE", }, references: [ { tags: [ "x_refsource_CONFIRM", "x_transferred", ], url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cm5x-837x-jf3c", }, { tags: [ "x_refsource_MISC", "x_transferred", ], url: "https://github.com/tensorflow/tensorflow/commit/e86605c0a336c088b638da02135ea6f9f6753618", }, ], title: "CVE Program Container", }, ], cna: { affected: [ { product: "tensorflow", vendor: "tensorflow", versions: [ { status: "affected", version: ">= 2.5.0, < 2.5.1", }, { status: "affected", version: ">= 2.4.0, < 2.4.3", }, { status: "affected", version: "< 2.3.4", }, ], }, ], descriptions: [ { lang: "en", value: "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a floating point exception by calling inplace operations with crafted arguments that would result in a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/inplace_ops.cc#L283) has a logic error: it should skip processing if `x` and `v` are empty but the code uses `||` instead of `&&`. We have patched the issue in GitHub commit e86605c0a336c088b638da02135ea6f9f6753618. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.", }, ], metrics: [ { cvssV3_1: { attackComplexity: "LOW", attackVector: "LOCAL", availabilityImpact: "HIGH", baseScore: 5.5, baseSeverity: "MEDIUM", confidentialityImpact: "NONE", integrityImpact: "NONE", privilegesRequired: "LOW", scope: "UNCHANGED", userInteraction: "NONE", vectorString: "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H", version: "3.1", }, }, ], problemTypes: [ { descriptions: [ { cweId: "CWE-369", description: "CWE-369: Divide By Zero", lang: "en", type: "CWE", }, ], }, ], providerMetadata: { dateUpdated: "2021-08-12T17:35:27", orgId: "a0819718-46f1-4df5-94e2-005712e83aaa", shortName: "GitHub_M", }, references: [ { tags: [ "x_refsource_CONFIRM", ], url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cm5x-837x-jf3c", }, { tags: [ "x_refsource_MISC", ], url: "https://github.com/tensorflow/tensorflow/commit/e86605c0a336c088b638da02135ea6f9f6753618", }, ], source: { advisory: "GHSA-cm5x-837x-jf3c", discovery: "UNKNOWN", }, title: "Division by 0 in inplace operations in TensorFlow", x_legacyV4Record: { CVE_data_meta: { ASSIGNER: "security-advisories@github.com", ID: "CVE-2021-37660", STATE: "PUBLIC", TITLE: "Division by 0 in inplace operations in TensorFlow", }, affects: { vendor: { vendor_data: [ { product: { product_data: [ { product_name: "tensorflow", version: { version_data: [ { version_value: ">= 2.5.0, < 2.5.1", }, { version_value: ">= 2.4.0, < 2.4.3", }, { version_value: "< 2.3.4", }, ], }, }, ], }, vendor_name: "tensorflow", }, ], }, }, data_format: "MITRE", data_type: "CVE", data_version: "4.0", description: { description_data: [ { lang: "eng", value: "TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a floating point exception by calling inplace operations with crafted arguments that would result in a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/inplace_ops.cc#L283) has a logic error: it should skip processing if `x` and `v` are empty but the code uses `||` instead of `&&`. We have patched the issue in GitHub commit e86605c0a336c088b638da02135ea6f9f6753618. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.", }, ], }, impact: { cvss: { attackComplexity: "LOW", attackVector: "LOCAL", availabilityImpact: "HIGH", baseScore: 5.5, baseSeverity: "MEDIUM", confidentialityImpact: "NONE", integrityImpact: "NONE", privilegesRequired: "LOW", scope: "UNCHANGED", userInteraction: "NONE", vectorString: "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H", version: "3.1", }, }, problemtype: { problemtype_data: [ { description: [ { lang: "eng", value: "CWE-369: Divide By Zero", }, ], }, ], }, references: { reference_data: [ { name: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cm5x-837x-jf3c", refsource: "CONFIRM", url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cm5x-837x-jf3c", }, { name: "https://github.com/tensorflow/tensorflow/commit/e86605c0a336c088b638da02135ea6f9f6753618", refsource: "MISC", url: "https://github.com/tensorflow/tensorflow/commit/e86605c0a336c088b638da02135ea6f9f6753618", }, ], }, source: { advisory: "GHSA-cm5x-837x-jf3c", discovery: "UNKNOWN", }, }, }, }, cveMetadata: { assignerOrgId: "a0819718-46f1-4df5-94e2-005712e83aaa", assignerShortName: "GitHub_M", cveId: "CVE-2021-37660", datePublished: "2021-08-12T17:35:27", dateReserved: "2021-07-29T00:00:00", dateUpdated: "2024-08-04T01:23:01.434Z", state: "PUBLISHED", }, dataType: "CVE_RECORD", dataVersion: "5.1", "vulnerability-lookup:meta": { nvd: "{\"cve\":{\"id\":\"CVE-2021-37660\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-08-12T18:15:10.903\",\"lastModified\":\"2024-11-21T06:15:38.270\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an end-to-end open source platform for machine learning. In affected versions an attacker can cause a floating point exception by calling inplace operations with crafted arguments that would result in a division by 0. The [implementation](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/inplace_ops.cc#L283) has a logic error: it should skip processing if `x` and `v` are empty but the code uses `||` instead of `&&`. We have patched the issue in GitHub commit e86605c0a336c088b638da02135ea6f9f6753618. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de código abierto de extremo a extremo para el aprendizaje automático. En las versiones afectadas, un atacante puede causar una excepción de punto flotante llamando a operaciones inplace con argumentos diseñados para causar una división por 0. La [implementación](https://github.com/tensorflow/tensorflow/blob/84d053187cb80d975ef2b9684d4b61981bca0c41/tensorflow/core/kernels/inplace_ops.cc#L283) presenta un error lógico: debería omitir el procesamiento si \\\"x\\\" y \\\"v\\\" están vacíos, pero el código usa \\\"||\\\" en lugar de \\\"&&\\\". Hemos parcheado el problema en el commit e86605c0a336c088b638da02135ea6f9f6753618 de GitHub. La corrección se incluirá en TensorFlow versión 2.6.0. También se incluirá este commit en TensorFlow versión 2.5.1, TensorFlow versión 2.4.3, y TensorFlow versión 2.3.4, ya que estos también están afectados y todavía están en el rango de soporte.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:N/I:N/A:P\",\"baseScore\":2.1,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"LOW\",\"exploitabilityScore\":3.9,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-369\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.4\",\"matchCriteriaId\":\"0F83C081-51CC-415F-A8C0-0A44C75E2CD6\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.4.0\",\"versionEndExcluding\":\"2.4.3\",\"matchCriteriaId\":\"BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*\",\"matchCriteriaId\":\"D03E99A7-4E3D-427D-A156-C0713E9FB02A\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*\",\"matchCriteriaId\":\"70FA6E48-6C57-40CA-809F-4E3D07CBF348\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*\",\"matchCriteriaId\":\"42187561-E491-434D-828C-F36701446634\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*\",\"matchCriteriaId\":\"C66B61C8-450A-4C5E-9174-F970D6DEE778\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/e86605c0a336c088b638da02135ea6f9f6753618\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cm5x-837x-jf3c\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/e86605c0a336c088b638da02135ea6f9f6753618\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-cm5x-837x-jf3c\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Third Party Advisory\"]}]}}", }, }
Log in or create an account to share your comment.
Security Advisory comment format.
This schema specifies the format of a comment related to a security advisory.
Title of the comment
Description of the comment
Loading…
Loading…
Loading…
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.