CVE-2021-29546
Vulnerability from cvelistv5
Published
2021-05-14 19:10
Modified
2024-08-03 22:11
Severity ?
EPSS score ?
0.02%
(0.02674)
Summary
TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger an integer division by zero undefined behavior in `tf.raw_ops.QuantizedBiasAdd`. This is because the implementation of the Eigen kernel(https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
References
▼ | URL | Tags | |
---|---|---|---|
security-advisories@github.com | https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb | Patch, Third Party Advisory | |
security-advisories@github.com | https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq | Exploit, Patch, Third Party Advisory | |
af854a3a-2127-422b-91ae-364da2661108 | https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb | Patch, Third Party Advisory | |
af854a3a-2127-422b-91ae-364da2661108 | https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq | Exploit, Patch, Third Party Advisory |
Impacted products
Vendor | Product | Version | ||
---|---|---|---|---|
tensorflow | tensorflow |
Version: < 2.1.4 Version: >= 2.2.0, < 2.2.3 Version: >= 2.3.0, < 2.3.3 Version: >= 2.4.0, < 2.4.2 |
{ containers: { adp: [ { providerMetadata: { dateUpdated: "2024-08-03T22:11:05.508Z", orgId: "af854a3a-2127-422b-91ae-364da2661108", shortName: "CVE", }, references: [ { tags: [ "x_refsource_CONFIRM", "x_transferred", ], url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq", }, { tags: [ "x_refsource_MISC", "x_transferred", ], url: "https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb", }, ], title: "CVE Program Container", }, ], cna: { affected: [ { product: "tensorflow", vendor: "tensorflow", versions: [ { status: "affected", version: "< 2.1.4", }, { status: "affected", version: ">= 2.2.0, < 2.2.3", }, { status: "affected", version: ">= 2.3.0, < 2.3.3", }, { status: "affected", version: ">= 2.4.0, < 2.4.2", }, ], }, ], descriptions: [ { lang: "en", value: "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger an integer division by zero undefined behavior in `tf.raw_ops.QuantizedBiasAdd`. This is because the implementation of the Eigen kernel(https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.", }, ], metrics: [ { cvssV3_1: { attackComplexity: "HIGH", attackVector: "LOCAL", availabilityImpact: "LOW", baseScore: 2.5, baseSeverity: "LOW", confidentialityImpact: "NONE", integrityImpact: "NONE", privilegesRequired: "LOW", scope: "UNCHANGED", userInteraction: "NONE", vectorString: "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", version: "3.1", }, }, ], problemTypes: [ { descriptions: [ { cweId: "CWE-369", description: "CWE-369: Divide By Zero", lang: "en", type: "CWE", }, ], }, ], providerMetadata: { dateUpdated: "2021-05-14T19:10:55", orgId: "a0819718-46f1-4df5-94e2-005712e83aaa", shortName: "GitHub_M", }, references: [ { tags: [ "x_refsource_CONFIRM", ], url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq", }, { tags: [ "x_refsource_MISC", ], url: "https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb", }, ], source: { advisory: "GHSA-m34j-p8rj-wjxq", discovery: "UNKNOWN", }, title: "Division by 0 in `QuantizedBiasAdd`", x_legacyV4Record: { CVE_data_meta: { ASSIGNER: "security-advisories@github.com", ID: "CVE-2021-29546", STATE: "PUBLIC", TITLE: "Division by 0 in `QuantizedBiasAdd`", }, affects: { vendor: { vendor_data: [ { product: { product_data: [ { product_name: "tensorflow", version: { version_data: [ { version_value: "< 2.1.4", }, { version_value: ">= 2.2.0, < 2.2.3", }, { version_value: ">= 2.3.0, < 2.3.3", }, { version_value: ">= 2.4.0, < 2.4.2", }, ], }, }, ], }, vendor_name: "tensorflow", }, ], }, }, data_format: "MITRE", data_type: "CVE", data_version: "4.0", description: { description_data: [ { lang: "eng", value: "TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger an integer division by zero undefined behavior in `tf.raw_ops.QuantizedBiasAdd`. This is because the implementation of the Eigen kernel(https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.", }, ], }, impact: { cvss: { attackComplexity: "HIGH", attackVector: "LOCAL", availabilityImpact: "LOW", baseScore: 2.5, baseSeverity: "LOW", confidentialityImpact: "NONE", integrityImpact: "NONE", privilegesRequired: "LOW", scope: "UNCHANGED", userInteraction: "NONE", vectorString: "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", version: "3.1", }, }, problemtype: { problemtype_data: [ { description: [ { lang: "eng", value: "CWE-369: Divide By Zero", }, ], }, ], }, references: { reference_data: [ { name: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq", refsource: "CONFIRM", url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq", }, { name: "https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb", refsource: "MISC", url: "https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb", }, ], }, source: { advisory: "GHSA-m34j-p8rj-wjxq", discovery: "UNKNOWN", }, }, }, }, cveMetadata: { assignerOrgId: "a0819718-46f1-4df5-94e2-005712e83aaa", assignerShortName: "GitHub_M", cveId: "CVE-2021-29546", datePublished: "2021-05-14T19:10:55", dateReserved: "2021-03-30T00:00:00", dateUpdated: "2024-08-03T22:11:05.508Z", state: "PUBLISHED", }, dataType: "CVE_RECORD", dataVersion: "5.1", "vulnerability-lookup:meta": { nvd: "{\"cve\":{\"id\":\"CVE-2021-29546\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-05-14T20:15:12.717\",\"lastModified\":\"2024-11-21T06:01:21.180\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an end-to-end open source platform for machine learning. An attacker can trigger an integer division by zero undefined behavior in `tf.raw_ops.QuantizedBiasAdd`. This is because the implementation of the Eigen kernel(https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) does a division by the number of elements of the smaller input (based on shape) without checking that this is not zero. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de código abierto de extremo a extremo para el aprendizaje automático. Un atacante puede desencadenar una división entera por un comportamiento indefinido cero en \\\"tf.raw_ops.QuantizedBiasAdd\\\". Esto es debido a que la implementación del kernel Eigen (https://github.com/tensorflow/tensorflow/blob/61bca8bd5ba8a68b2d97435ddfafcdf2b85672cd/tensorflow/core/kernels/quantization_utils.h#L812-L849) hace una división por el número de elementos del entrada más pequeña (basada en una forma) sin comprobar que no sea cero. La corrección será incluida en TensorFlow versión 2.5.0. También seleccionaremos este commit en TensorFlow versión 2.4.2, TensorFlow versión 2.3.3, TensorFlow versión 2.2.3 y TensorFlow versión 2.1.4, ya que estos también están afectados y aún están en el rango compatible\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L\",\"baseScore\":2.5,\"baseSeverity\":\"LOW\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.0,\"impactScore\":1.4},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\",\"baseScore\":7.8,\"baseSeverity\":\"HIGH\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":5.9}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:P/I:P/A:P\",\"baseScore\":4.6,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"PARTIAL\",\"integrityImpact\":\"PARTIAL\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"MEDIUM\",\"exploitabilityScore\":3.9,\"impactScore\":6.4,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-369\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"2.1.4\",\"matchCriteriaId\":\"323ABCCE-24EB-47CC-87F6-48C101477587\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.2.0\",\"versionEndExcluding\":\"2.2.3\",\"matchCriteriaId\":\"64ABA90C-0649-4BB0-89C9-83C14BBDCC0F\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.3\",\"matchCriteriaId\":\"0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.4.0\",\"versionEndExcluding\":\"2.4.2\",\"matchCriteriaId\":\"8259531B-A8AC-4F8B-B60F-B69DE4767C03\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/67784700869470d65d5f2ef20aeb5e97c31673cb\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m34j-p8rj-wjxq\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}", }, }
Log in or create an account to share your comment.
Security Advisory comment format.
This schema specifies the format of a comment related to a security advisory.
Title of the comment
Description of the comment
Loading…
Loading…
Loading…
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.