pysec-2021-647
Vulnerability from pysec
Published
2021-05-14 20:15
Modified
2021-12-09 06:35
Details

TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in tf.raw_ops.SparseCountSparseOutput results in a segmentation fault being thrown out from the standard library as std::vector invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a BatchedMap<T> (i.e., std::vector<absl::flat_hash_map<int64,T>>(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the shape tensor has more than one element, num_batches is the first value in shape. Ensuring that the dense_shape argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3.




{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu",
        "purl": "pkg:pypi/tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5"
            }
          ],
          "repo": "https://github.com/tensorflow/tensorflow",
          "type": "GIT"
        },
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            },
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.3.0",
        "2.3.1",
        "2.3.2",
        "2.4.0",
        "2.4.1"
      ]
    }
  ],
  "aliases": [
    "CVE-2021-29521",
    "GHSA-hr84-fqvp-48mm"
  ],
  "details": "TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in `tf.raw_ops.SparseCountSparseOutput` results in a segmentation fault being thrown out from the standard library as `std::vector` invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a `BatchedMap\u003cT\u003e` (i.e., `std::vector\u003cabsl::flat_hash_map\u003cint64,T\u003e\u003e`(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the `shape` tensor has more than one element, `num_batches` is the first value in `shape`. Ensuring that the `dense_shape` argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3.",
  "id": "PYSEC-2021-647",
  "modified": "2021-12-09T06:35:18.423070Z",
  "published": "2021-05-14T20:15:00Z",
  "references": [
    {
      "type": "FIX",
      "url": "https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5"
    },
    {
      "type": "ADVISORY",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hr84-fqvp-48mm"
    }
  ]
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.