PYSEC-2021-494

Vulnerability from pysec - Published: 2021-05-14 20:15 - Updated: 2021-12-09 06:34
VLAI?
Details

TensorFlow is an end-to-end open source platform for machine learning. An attacker can write outside the bounds of heap allocated arrays by passing invalid arguments to tf.raw_ops.Dilation2DBackpropInput. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/afd954e65f15aea4d438d0a219136fc4a63a573d/tensorflow/core/kernels/dilation_ops.cc#L321-L322) does not validate before writing to the output array. The values for h_out and w_out are guaranteed to be in range for out_backprop (as they are loop indices bounded by the size of the array). However, there are no similar guarantees relating h_in_max/w_in_max and in_backprop. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

Impacted products
Name purl
tensorflow-cpu pkg:pypi/tensorflow-cpu

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu",
        "purl": "pkg:pypi/tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "3f6fe4dfef6f57e768260b48166c27d148f3015f"
            }
          ],
          "repo": "https://github.com/tensorflow/tensorflow",
          "type": "GIT"
        },
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.2.0rc0"
            },
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.3.0rc0"
            },
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.4"
            },
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "1.15.0",
        "2.1.0",
        "2.1.1",
        "2.1.2",
        "2.1.3",
        "2.1.4",
        "2.2.0",
        "2.2.1",
        "2.2.2",
        "2.2.3",
        "2.3.0",
        "2.3.1",
        "2.3.2",
        "2.3.3",
        "2.4.0",
        "2.4.1",
        "2.4.2"
      ]
    }
  ],
  "aliases": [
    "CVE-2021-29566",
    "GHSA-pvrc-hg3f-58r6"
  ],
  "details": "TensorFlow is an end-to-end open source platform for machine learning. An attacker can write outside the bounds of heap allocated arrays by passing invalid arguments to `tf.raw_ops.Dilation2DBackpropInput`. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/afd954e65f15aea4d438d0a219136fc4a63a573d/tensorflow/core/kernels/dilation_ops.cc#L321-L322) does not validate before writing to the output array. The values for `h_out` and `w_out` are guaranteed to be in range for `out_backprop` (as they are loop indices bounded by the size of the array). However, there are no similar guarantees relating `h_in_max`/`w_in_max` and `in_backprop`. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.",
  "id": "PYSEC-2021-494",
  "modified": "2021-12-09T06:34:53.596467Z",
  "published": "2021-05-14T20:15:00Z",
  "references": [
    {
      "type": "FIX",
      "url": "https://github.com/tensorflow/tensorflow/commit/3f6fe4dfef6f57e768260b48166c27d148f3015f"
    },
    {
      "type": "ADVISORY",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-pvrc-hg3f-58r6"
    }
  ]
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…