pysec-2021-449
Vulnerability from pysec
TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in tf.raw_ops.SparseCountSparseOutput
results in a segmentation fault being thrown out from the standard library as std::vector
invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a BatchedMap<T>
(i.e., std::vector<absl::flat_hash_map<int64,T>>
(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the shape
tensor has more than one element, num_batches
is the first value in shape
. Ensuring that the dense_shape
argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3.
{ "affected": [ { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu", "purl": "pkg:pypi/tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5" } ], "repo": "https://github.com/tensorflow/tensorflow", "type": "GIT" }, { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.3" }, { "introduced": "2.4.0" }, { "fixed": "2.4.2" } ], "type": "ECOSYSTEM" } ], "versions": [ "2.3.0", "2.3.1", "2.3.2", "2.4.0", "2.4.1" ] } ], "aliases": [ "CVE-2021-29521", "GHSA-hr84-fqvp-48mm" ], "details": "TensorFlow is an end-to-end open source platform for machine learning. Specifying a negative dense shape in `tf.raw_ops.SparseCountSparseOutput` results in a segmentation fault being thrown out from the standard library as `std::vector` invariants are broken. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L199-L213) assumes the first element of the dense shape is always positive and uses it to initialize a `BatchedMap\u003cT\u003e` (i.e., `std::vector\u003cabsl::flat_hash_map\u003cint64,T\u003e\u003e`(https://github.com/tensorflow/tensorflow/blob/8f7b60ee8c0206a2c99802e3a4d1bb55d2bc0624/tensorflow/core/kernels/count_ops.cc#L27)) data structure. If the `shape` tensor has more than one element, `num_batches` is the first value in `shape`. Ensuring that the `dense_shape` argument is a valid tensor shape (that is, all elements are non-negative) solves this issue. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2 and TensorFlow 2.3.3.", "id": "PYSEC-2021-449", "modified": "2021-12-09T06:34:46.609278Z", "published": "2021-05-14T20:15:00Z", "references": [ { "type": "FIX", "url": "https://github.com/tensorflow/tensorflow/commit/c57c0b9f3a4f8684f3489dd9a9ec627ad8b599f5" }, { "type": "ADVISORY", "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-hr84-fqvp-48mm" } ] }
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.