gsd-2021-29571
Vulnerability from gsd
Modified
2023-12-13 01:23
Details
TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/31bd5026304677faa8a0b77602c6154171b9aec1/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L116-L130) assumes that the last element of `boxes` input is 4, as required by [the op](https://www.tensorflow.org/api_docs/python/tf/raw_ops/DrawBoundingBoxesV2). Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes(b, bb, 3)` will access data outside of bounds. Further during code execution there are also writes to these indices. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
Aliases
Aliases
{ "GSD": { "alias": "CVE-2021-29571", "description": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/31bd5026304677faa8a0b77602c6154171b9aec1/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L116-L130) assumes that the last element of `boxes` input is 4, as required by [the op](https://www.tensorflow.org/api_docs/python/tf/raw_ops/DrawBoundingBoxesV2). Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes(b, bb, 3)` will access data outside of bounds. Further during code execution there are also writes to these indices. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.", "id": "GSD-2021-29571", "references": [ "https://www.suse.com/security/cve/CVE-2021-29571.html", "https://security.archlinux.org/CVE-2021-29571" ] }, "gsd": { "metadata": { "exploitCode": "unknown", "remediation": "unknown", "reportConfidence": "confirmed", "type": "vulnerability" }, "osvSchema": { "aliases": [ "CVE-2021-29571" ], "details": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/31bd5026304677faa8a0b77602c6154171b9aec1/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L116-L130) assumes that the last element of `boxes` input is 4, as required by [the op](https://www.tensorflow.org/api_docs/python/tf/raw_ops/DrawBoundingBoxesV2). Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes(b, bb, 3)` will access data outside of bounds. Further during code execution there are also writes to these indices. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.", "id": "GSD-2021-29571", "modified": "2023-12-13T01:23:36.977095Z", "schema_version": "1.4.0" } }, "namespaces": { "cve.org": { "CVE_data_meta": { "ASSIGNER": "security-advisories@github.com", "ID": "CVE-2021-29571", "STATE": "PUBLIC", "TITLE": "Memory corruption in `DrawBoundingBoxesV2`" }, "affects": { "vendor": { "vendor_data": [ { "product": { "product_data": [ { "product_name": "tensorflow", "version": { "version_data": [ { "version_value": "\u003c 2.1.4" }, { "version_value": "\u003e= 2.2.0, \u003c 2.2.3" }, { "version_value": "\u003e= 2.3.0, \u003c 2.3.3" }, { "version_value": "\u003e= 2.4.0, \u003c 2.4.2" } ] } } ] }, "vendor_name": "tensorflow" } ] } }, "data_format": "MITRE", "data_type": "CVE", "data_version": "4.0", "description": { "description_data": [ { "lang": "eng", "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/31bd5026304677faa8a0b77602c6154171b9aec1/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L116-L130) assumes that the last element of `boxes` input is 4, as required by [the op](https://www.tensorflow.org/api_docs/python/tf/raw_ops/DrawBoundingBoxesV2). Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes(b, bb, 3)` will access data outside of bounds. Further during code execution there are also writes to these indices. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range." } ] }, "impact": { "cvss": { "attackComplexity": "HIGH", "attackVector": "LOCAL", "availabilityImpact": "LOW", "baseScore": 4.5, "baseSeverity": "MEDIUM", "confidentialityImpact": "LOW", "integrityImpact": "LOW", "privilegesRequired": "LOW", "scope": "UNCHANGED", "userInteraction": "NONE", "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:L/I:L/A:L", "version": "3.1" } }, "problemtype": { "problemtype_data": [ { "description": [ { "lang": "eng", "value": "CWE-787: Out-of-bounds Write" } ] } ] }, "references": { "reference_data": [ { "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-whr9-vfh2-7hm6", "refsource": "CONFIRM", "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-whr9-vfh2-7hm6" }, { "name": "https://github.com/tensorflow/tensorflow/commit/79865b542f9ffdc9caeb255631f7c56f1d4b6517", "refsource": "MISC", "url": "https://github.com/tensorflow/tensorflow/commit/79865b542f9ffdc9caeb255631f7c56f1d4b6517" } ] }, "source": { "advisory": "GHSA-whr9-vfh2-7hm6", "discovery": "UNKNOWN" } }, "gitlab.com": { "advisories": [ { "affected_range": "\u003c2.1.4||\u003e=2.2.0,\u003c2.2.3||\u003e=2.3.0,\u003c2.3.3||\u003e=2.4.0,\u003c2.4.2", "affected_versions": "All versions before 2.1.4, all versions starting from 2.2.0 before 2.2.3, all versions starting from 2.3.0 before 2.3.3, all versions starting from 2.4.0 before 2.4.2", "cvss_v2": "AV:L/AC:L/Au:N/C:P/I:P/A:P", "cvss_v3": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "cwe_ids": [ "CWE-1035", "CWE-78", "CWE-787", "CWE-937" ], "date": "2021-05-21", "description": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation assumes that the last element of `boxes` input is 4, as required by the op Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes` will access data outside of bounds. Further during code execution there are also writes to these indices. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.", "fixed_versions": [ "2.1.4", "2.2.3", "2.3.3", "2.4.2" ], "identifier": "CVE-2021-29571", "identifiers": [ "GHSA-whr9-vfh2-7hm6", "CVE-2021-29571" ], "not_impacted": "All versions starting from 2.1.4 before 2.2.0, all versions starting from 2.2.3 before 2.3.0, all versions starting from 2.3.3 before 2.4.0, all versions starting from 2.4.2", "package_slug": "pypi/tensorflow-cpu", "pubdate": "2021-05-21", "solution": "Upgrade to versions 2.1.4, 2.2.3, 2.3.3, 2.4.2 or above.", "title": "Out-of-bounds Write", "urls": [ "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-whr9-vfh2-7hm6", "https://nvd.nist.gov/vuln/detail/CVE-2021-29571", "https://github.com/tensorflow/tensorflow/commit/79865b542f9ffdc9caeb255631f7c56f1d4b6517", "https://github.com/advisories/GHSA-whr9-vfh2-7hm6" ], "uuid": "c3b9cab4-737c-4413-9053-50b3daff7eb0" }, { "affected_range": "\u003c2.1.4||\u003e=2.2.0,\u003c2.2.3||\u003e=2.3.0,\u003c2.3.3||\u003e=2.4.0,\u003c2.4.2", "affected_versions": "All versions before 2.1.4, all versions starting from 2.2.0 before 2.2.3, all versions starting from 2.3.0 before 2.3.3, all versions starting from 2.4.0 before 2.4.2", "cvss_v2": "AV:L/AC:L/Au:N/C:P/I:P/A:P", "cvss_v3": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "cwe_ids": [ "CWE-1035", "CWE-78", "CWE-787", "CWE-937" ], "date": "2021-05-21", "description": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation assumes that the last element of `boxes` input is 4, as required by the op Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes` will access data outside of bounds. Further during code execution there are also writes to these indices. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.", "fixed_versions": [ "2.1.4", "2.2.3", "2.3.3", "2.4.2" ], "identifier": "CVE-2021-29571", "identifiers": [ "GHSA-whr9-vfh2-7hm6", "CVE-2021-29571" ], "not_impacted": "All versions starting from 2.1.4 before 2.2.0, all versions starting from 2.2.3 before 2.3.0, all versions starting from 2.3.3 before 2.4.0, all versions starting from 2.4.2", "package_slug": "pypi/tensorflow-gpu", "pubdate": "2021-05-21", "solution": "Upgrade to versions 2.1.4, 2.2.3, 2.3.3, 2.4.2 or above.", "title": "Out-of-bounds Write", "urls": [ "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-whr9-vfh2-7hm6", "https://nvd.nist.gov/vuln/detail/CVE-2021-29571", "https://github.com/tensorflow/tensorflow/commit/79865b542f9ffdc9caeb255631f7c56f1d4b6517", "https://github.com/advisories/GHSA-whr9-vfh2-7hm6" ], "uuid": "6d0f08cd-6cba-4532-9c60-13b98a8dd670" }, { "affected_range": "\u003c=2.1.4||\u003e=2.2.0,\u003c=2.2.3||\u003e=2.3.0,\u003c=2.3.3||\u003e=2.4.0,\u003c=2.4.2", "affected_versions": "All versions up to 2.1.4, all versions starting from 2.2.0 up to 2.2.3, all versions starting from 2.3.0 up to 2.3.3, all versions starting from 2.4.0 up to 2.4.2", "cvss_v2": "AV:L/AC:L/Au:N/C:P/I:P/A:P", "cvss_v3": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "cwe_ids": [ "CWE-1035", "CWE-787", "CWE-937" ], "date": "2021-07-26", "description": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes(b, bb, 3)` will access data outside of bounds. Further during code execution there are also writes to these indices.", "fixed_versions": [ "2.5.0" ], "identifier": "CVE-2021-29571", "identifiers": [ "CVE-2021-29571", "GHSA-whr9-vfh2-7hm6" ], "not_impacted": "All versions after 2.1.4 before 2.2.0, all versions after 2.2.3 before 2.3.0, all versions after 2.3.3 before 2.4.0, all versions after 2.4.2", "package_slug": "pypi/tensorflow", "pubdate": "2021-05-14", "solution": "Upgrade to version 2.5.0 or above.", "title": "Out-of-bounds Write", "urls": [ "https://nvd.nist.gov/vuln/detail/CVE-2021-29571" ], "uuid": "48df5329-1c9f-49bc-abf9-399e84934eaa" } ] }, "nvd.nist.gov": { "configurations": { "CVE_data_version": "4.0", "nodes": [ { "children": [], "cpe_match": [ { "cpe23Uri": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*", "cpe_name": [], "versionEndExcluding": "2.1.4", "vulnerable": true }, { "cpe23Uri": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*", "cpe_name": [], "versionEndExcluding": "2.2.3", "versionStartIncluding": "2.2.0", "vulnerable": true }, { "cpe23Uri": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*", "cpe_name": [], "versionEndExcluding": "2.3.3", "versionStartIncluding": "2.3.0", "vulnerable": true }, { "cpe23Uri": "cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*", "cpe_name": [], "versionEndExcluding": "2.4.2", "versionStartIncluding": "2.4.0", "vulnerable": true } ], "operator": "OR" } ] }, "cve": { "CVE_data_meta": { "ASSIGNER": "security-advisories@github.com", "ID": "CVE-2021-29571" }, "data_format": "MITRE", "data_type": "CVE", "data_version": "4.0", "description": { "description_data": [ { "lang": "en", "value": "TensorFlow is an end-to-end open source platform for machine learning. The implementation of `tf.raw_ops.MaxPoolGradWithArgmax` can cause reads outside of bounds of heap allocated data if attacker supplies specially crafted inputs. The implementation(https://github.com/tensorflow/tensorflow/blob/31bd5026304677faa8a0b77602c6154171b9aec1/tensorflow/core/kernels/image/draw_bounding_box_op.cc#L116-L130) assumes that the last element of `boxes` input is 4, as required by [the op](https://www.tensorflow.org/api_docs/python/tf/raw_ops/DrawBoundingBoxesV2). Since this is not checked attackers passing values less than 4 can write outside of bounds of heap allocated objects and cause memory corruption. If the last dimension in `boxes` is less than 4, accesses similar to `tboxes(b, bb, 3)` will access data outside of bounds. Further during code execution there are also writes to these indices. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range." } ] }, "problemtype": { "problemtype_data": [ { "description": [ { "lang": "en", "value": "CWE-787" } ] } ] }, "references": { "reference_data": [ { "name": "https://github.com/tensorflow/tensorflow/commit/79865b542f9ffdc9caeb255631f7c56f1d4b6517", "refsource": "MISC", "tags": [ "Patch", "Third Party Advisory" ], "url": "https://github.com/tensorflow/tensorflow/commit/79865b542f9ffdc9caeb255631f7c56f1d4b6517" }, { "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-whr9-vfh2-7hm6", "refsource": "CONFIRM", "tags": [ "Exploit", "Patch", "Third Party Advisory" ], "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-whr9-vfh2-7hm6" } ] } }, "impact": { "baseMetricV2": { "acInsufInfo": false, "cvssV2": { "accessComplexity": "LOW", "accessVector": "LOCAL", "authentication": "NONE", "availabilityImpact": "PARTIAL", "baseScore": 4.6, "confidentialityImpact": "PARTIAL", "integrityImpact": "PARTIAL", "vectorString": "AV:L/AC:L/Au:N/C:P/I:P/A:P", "version": "2.0" }, "exploitabilityScore": 3.9, "impactScore": 6.4, "obtainAllPrivilege": false, "obtainOtherPrivilege": false, "obtainUserPrivilege": false, "severity": "MEDIUM", "userInteractionRequired": false }, "baseMetricV3": { "cvssV3": { "attackComplexity": "LOW", "attackVector": "LOCAL", "availabilityImpact": "HIGH", "baseScore": 7.8, "baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "scope": "UNCHANGED", "userInteraction": "NONE", "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1" }, "exploitabilityScore": 1.8, "impactScore": 5.9 } }, "lastModifiedDate": "2021-07-26T16:10Z", "publishedDate": "2021-05-14T20:15Z" } } }
Loading…
Loading…
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.