ghsa-wf5p-c75w-w3wh
Vulnerability from github
Published
2021-08-25 14:39
Modified
2024-11-13 21:23
Summary
Null pointer dereference in TFLite MLIR optimizations
Details

Impact

An attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service:

This is caused by the MLIR optimization of L2NormalizeReduceAxis operator. The implementation unconditionally dereferences a pointer to an iterator to a vector without checking that the vector has elements:

cc bool L2NormalizeReduceAxis(Value sq_op, DenseElementsAttr axis) { if (sq_op.getType().cast<ShapedType>().getRank() - 1 == *axis.getValues<int>().begin() || *axis.getValues<int>().begin() == -1) { // ... } // ... }

Patches

We have patched the issue in GitHub commit d6b57f461b39fd1aa8c1b870f1b974aac3554955.

The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang of Baidu Security.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    }
  ],
  "aliases": [
    "CVE-2021-37689"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-476"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-08-24T17:58:35Z",
    "nvd_published_at": "2021-08-12T22:15:00Z",
    "severity": "HIGH"
  },
  "details": "### Impact\nAn attacker can craft a TFLite model that would trigger a null pointer dereference, which would result in a crash and denial of service:\n\nThis is caused by the MLIR optimization of `L2NormalizeReduceAxis` operator. The [implementation](https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/compiler/mlir/lite/transforms/optimize.cc#L67-L70) unconditionally dereferences a pointer to an iterator to a vector without checking that the vector has elements:\n\n```cc\nbool L2NormalizeReduceAxis(Value sq_op, DenseElementsAttr axis) {\n  if (sq_op.getType().cast\u003cShapedType\u003e().getRank() - 1 ==\n          *axis.getValues\u003cint\u003e().begin() ||\n      *axis.getValues\u003cint\u003e().begin() == -1) {\n      // ...\n  }\n  // ...\n}\n```\n\n### Patches\nWe have patched the issue in GitHub commit [d6b57f461b39fd1aa8c1b870f1b974aac3554955](https://github.com/tensorflow/tensorflow/commit/d6b57f461b39fd1aa8c1b870f1b974aac3554955).\n\nThe fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.\n  \n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n          \n### Attribution              \nThis vulnerability has been reported by Yakun Zhang of Baidu Security.",
  "id": "GHSA-wf5p-c75w-w3wh",
  "modified": "2024-11-13T21:23:11Z",
  "published": "2021-08-25T14:39:36Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wf5p-c75w-w3wh"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-37689"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/d6b57f461b39fd1aa8c1b870f1b974aac3554955"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-602.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-800.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-311.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/blob/149562d49faa709ea80df1d99fc41d005b81082a/tensorflow/compiler/mlir/lite/transforms/optimize.cc#L67-L70"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:N/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Null pointer dereference in TFLite MLIR optimizations"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.