ghsa-v5xg-3q2c-c2r4
Vulnerability from github
Published
2022-09-16 22:11
Modified
2022-09-19 19:35
Summary
TensorFlow vulnerable to `CHECK` failure in `TensorListReserve` via missing validation
Details

Impact

In core/kernels/list_kernels.cc's TensorListReserve, num_elements is assumed to be a tensor of size 1. When a num_elements of more than 1 element is provided, then tf.raw_ops.TensorListReserve fails the CHECK_EQ in CheckIsAlignedAndSingleElement. ```python import tensorflow as tf

tf.raw_ops.TensorListReserve(element_shape=(1,1), num_elements=tf.constant([1,1], dtype=tf.int32), element_dtype=tf.int8) ```

Patches

We have patched the issue in GitHub commit b5f6fbfba76576202b72119897561e3bd4f179c7.

The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Kang Hong Jin from Singapore Management University.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2022-35960"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-617"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2022-09-16T22:11:18Z",
    "nvd_published_at": "2022-09-16T20:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nIn [`core/kernels/list_kernels.cc\u0027s TensorListReserve`](https://github.com/tensorflow/tensorflow/blob/c8ba76d48567aed347508e0552a257641931024d/tensorflow/core/kernels/list_kernels.cc#L322-L325), `num_elements` is assumed to be a tensor of size 1. When a `num_elements` of more than 1 element is provided, then `tf.raw_ops.TensorListReserve` fails the `CHECK_EQ` in `CheckIsAlignedAndSingleElement`.\n```python\nimport tensorflow as tf\n\ntf.raw_ops.TensorListReserve(element_shape=(1,1), num_elements=tf.constant([1,1], dtype=tf.int32), element_dtype=tf.int8)\n```\n\n### Patches\nWe have patched the issue in GitHub commit [b5f6fbfba76576202b72119897561e3bd4f179c7](https://github.com/tensorflow/tensorflow/commit/b5f6fbfba76576202b72119897561e3bd4f179c7).\n\n\nThe fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.\n\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n\n### Attribution\nThis vulnerability has been reported by Kang Hong Jin from Singapore Management University.\n",
  "id": "GHSA-v5xg-3q2c-c2r4",
  "modified": "2022-09-19T19:35:30Z",
  "published": "2022-09-16T22:11:18Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-v5xg-3q2c-c2r4"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2022-35960"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/b5f6fbfba76576202b72119897561e3bd4f179c7"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/blob/c8ba76d48567aed347508e0552a257641931024d/tensorflow/core/kernels/list_kernels.cc#L322-L325"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.10.0"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
      "type": "CVSS_V3"
    }
  ],
  "summary": "TensorFlow vulnerable to `CHECK` failure in `TensorListReserve` via missing validation"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.