ghsa-qxpx-j395-pw36
Vulnerability from github
Published
2022-09-16 22:14
Modified
2022-09-19 19:26
Summary
TensorFlow vulnerable to segfault in `LowerBound` and `UpperBound`
Details

Impact

If LowerBound or UpperBound is given an emptysorted_inputs input, it results in a nullptr dereference, leading to a segfault that can be used to trigger a denial of service attack. ```python import tensorflow as tf

out_type = tf.int32 sorted_inputs = tf.constant([], shape=[10,0], dtype=tf.float32) values = tf.constant([], shape=[10,10,0,10,0], dtype=tf.float32) tf.raw_ops.LowerBound(sorted_inputs=sorted_inputs, values=values, out_type=out_type) python import tensorflow as tf

out_type = tf.int64 sorted_inputs = tf.constant([], shape=[2,2,0,0,0,0,0,2], dtype=tf.float32) values = tf.constant(0.372660398, shape=[2,4], dtype=tf.float32) tf.raw_ops.UpperBound(sorted_inputs=sorted_inputs, values=values, out_type=out_type) ```

Patches

We have patched the issue in GitHub commit bce3717eaef4f769019fd18e990464ca4a2efeea.

The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Neophytos Christou, Secure Systems Labs, Brown University.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2022-35965"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-476"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2022-09-16T22:14:39Z",
    "nvd_published_at": "2022-09-16T21:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nIf `LowerBound` or `UpperBound` is given an empty`sorted_inputs` input, it results in a `nullptr` dereference, leading to a segfault that can be used to trigger a denial of service attack.\n```python\nimport tensorflow as tf\n\nout_type = tf.int32\nsorted_inputs = tf.constant([], shape=[10,0], dtype=tf.float32)\nvalues = tf.constant([], shape=[10,10,0,10,0], dtype=tf.float32)\ntf.raw_ops.LowerBound(sorted_inputs=sorted_inputs, values=values, out_type=out_type)\n```\n```python\nimport tensorflow as tf\n\nout_type = tf.int64\nsorted_inputs = tf.constant([], shape=[2,2,0,0,0,0,0,2], dtype=tf.float32)\nvalues = tf.constant(0.372660398, shape=[2,4], dtype=tf.float32)\ntf.raw_ops.UpperBound(sorted_inputs=sorted_inputs, values=values, out_type=out_type)\n```\n\n### Patches\nWe have patched the issue in GitHub commit [bce3717eaef4f769019fd18e990464ca4a2efeea](https://github.com/tensorflow/tensorflow/commit/bce3717eaef4f769019fd18e990464ca4a2efeea).\n\nThe fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.\n\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n\n### Attribution\nThis vulnerability has been reported by Neophytos Christou, Secure Systems Labs, Brown University.",
  "id": "GHSA-qxpx-j395-pw36",
  "modified": "2022-09-19T19:26:56Z",
  "published": "2022-09-16T22:14:39Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qxpx-j395-pw36"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2022-35965"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/bce3717eaef4f769019fd18e990464ca4a2efeea"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.10.0"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
      "type": "CVSS_V3"
    }
  ],
  "summary": "TensorFlow vulnerable to segfault in `LowerBound` and `UpperBound`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.