ghsa-q4qf-3fc6-8x34
Vulnerability from github
Published
2020-09-25 18:28
Modified
2024-10-30 21:12
Summary
Segfault and data corruption in tensorflow-lite
Details

Impact

To mimic Python's indexing with negative values, TFLite uses ResolveAxis to convert negative values to positive indices. However, the only check that the converted index is now valid is only present in debug builds: https://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/lite/kernels/internal/reference/reduce.h#L68-L72

If the DCHECK does not trigger, then code execution moves ahead with a negative index. This, in turn, results in accessing data out of bounds which results in segfaults and/or data corruption.

Patches

We have patched the issue in 2d88f470dea2671b430884260f3626b1fe99830a and will release patch releases for all versions between 1.15 and 2.3.

We recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "1.15.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.0.0"
            },
            {
              "fixed": "2.0.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.1.0"
            },
            {
              "fixed": "2.1.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.2.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.3.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "1.15.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.0.0"
            },
            {
              "fixed": "2.0.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.1.0"
            },
            {
              "fixed": "2.1.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.2.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.3.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "1.15.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.0.0"
            },
            {
              "fixed": "2.0.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.1.0"
            },
            {
              "fixed": "2.1.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.2.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.3.0"
      ]
    }
  ],
  "aliases": [
    "CVE-2020-15207"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-119",
      "CWE-787"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2020-09-25T17:55:41Z",
    "nvd_published_at": "2020-09-25T19:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nTo mimic Python\u0027s indexing with negative values, TFLite uses `ResolveAxis` to convert negative values to positive indices. However, the only check that the converted index is now valid is only present in debug builds:\nhttps://github.com/tensorflow/tensorflow/blob/0e68f4d3295eb0281a517c3662f6698992b7b2cf/tensorflow/lite/kernels/internal/reference/reduce.h#L68-L72\n\nIf the `DCHECK` does not trigger, then code execution moves ahead with a negative index. This, in turn, results in accessing data out of bounds which results in segfaults and/or data corruption.\n### Patches\nWe have patched the issue in 2d88f470dea2671b430884260f3626b1fe99830a and will release patch releases for all versions between 1.15 and 2.3.\n\nWe recommend users to upgrade to TensorFlow 1.15.4, 2.0.3, 2.1.2, 2.2.1, or 2.3.1.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by members of the Aivul Team from Qihoo 360.",
  "id": "GHSA-q4qf-3fc6-8x34",
  "modified": "2024-10-30T21:12:25Z",
  "published": "2020-09-25T18:28:43Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-q4qf-3fc6-8x34"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2020-15207"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/2d88f470dea2671b430884260f3626b1fe99830a"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2020-287.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2020-322.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2020-130.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.3.1"
    },
    {
      "type": "WEB",
      "url": "http://lists.opensuse.org/opensuse-security-announce/2020-10/msg00065.html"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:C/C:N/I:H/A:H",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:P/VC:N/VI:N/VA:N/SC:N/SI:H/SA:H",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Segfault and data corruption in tensorflow-lite"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.