ghsa-m3f9-w3p3-p669
Vulnerability from github
Impact
An attacker can cause a heap buffer overflow in QuantizedMul
by passing in invalid thresholds for the quantization:
```python import tensorflow as tf
x = tf.constant([256, 328], shape=[1, 2], dtype=tf.quint8) y = tf.constant([256, 328], shape=[1, 2], dtype=tf.quint8) min_x = tf.constant([], dtype=tf.float32) max_x = tf.constant([], dtype=tf.float32) min_y = tf.constant([], dtype=tf.float32) max_y = tf.constant([], dtype=tf.float32)
tf.raw_ops.QuantizedMul(x=x, y=y, min_x=min_x, max_x=max_x, min_y=min_y, max_y=max_y) ```
This is because the implementation assumes that the 4 arguments are always valid scalars and tries to access the numeric value directly:
cc
const float min_x = context->input(2).flat<float>()(0);
const float max_x = context->input(3).flat<float>()(0);
const float min_y = context->input(4).flat<float>()(0);
const float max_y = context->input(5).flat<float>()(0);
However, if any of these tensors is empty, then .flat<T>()
is an empty buffer and accessing the element at position 0 results in overflow.
Patches
We have patched the issue in GitHub commit efea03b38fb8d3b81762237dc85e579cc5fc6e87.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.
{ "affected": [ { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.1.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.4.0" }, { "fixed": "2.4.2" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.1.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.4.0" }, { "fixed": "2.4.2" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.1.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.4.0" }, { "fixed": "2.4.2" } ], "type": "ECOSYSTEM" } ] } ], "aliases": [ "CVE-2021-29535" ], "database_specific": { "cwe_ids": [ "CWE-131", "CWE-787" ], "github_reviewed": true, "github_reviewed_at": "2021-05-18T22:38:55Z", "nvd_published_at": "2021-05-14T20:15:00Z", "severity": "LOW" }, "details": "### Impact\nAn attacker can cause a heap buffer overflow in `QuantizedMul` by passing in invalid thresholds for the quantization:\n\n```python\nimport tensorflow as tf\n\nx = tf.constant([256, 328], shape=[1, 2], dtype=tf.quint8)\ny = tf.constant([256, 328], shape=[1, 2], dtype=tf.quint8)\nmin_x = tf.constant([], dtype=tf.float32)\nmax_x = tf.constant([], dtype=tf.float32)\nmin_y = tf.constant([], dtype=tf.float32)\nmax_y = tf.constant([], dtype=tf.float32)\n\ntf.raw_ops.QuantizedMul(x=x, y=y, min_x=min_x, max_x=max_x, min_y=min_y, max_y=max_y)\n```\n\nThis is because the [implementation](https://github.com/tensorflow/tensorflow/blob/87cf4d3ea9949051e50ca3f071fc909538a51cd0/tensorflow/core/kernels/quantized_mul_op.cc#L287-L290) assumes that the 4 arguments are always valid scalars and tries to access the numeric value directly:\n\n```cc \nconst float min_x = context-\u003einput(2).flat\u003cfloat\u003e()(0);\nconst float max_x = context-\u003einput(3).flat\u003cfloat\u003e()(0);\nconst float min_y = context-\u003einput(4).flat\u003cfloat\u003e()(0);\nconst float max_y = context-\u003einput(5).flat\u003cfloat\u003e()(0);\n```\n\nHowever, if any of these tensors is empty, then `.flat\u003cT\u003e()` is an empty buffer and accessing the element at position 0 results in overflow.\n\n### Patches\nWe have patched the issue in GitHub commit [efea03b38fb8d3b81762237dc85e579cc5fc6e87](https://github.com/tensorflow/tensorflow/commit/efea03b38fb8d3b81762237dc85e579cc5fc6e87).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.", "id": "GHSA-m3f9-w3p3-p669", "modified": "2024-10-30T23:23:48Z", "published": "2021-05-21T14:22:28Z", "references": [ { "type": "WEB", "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m3f9-w3p3-p669" }, { "type": "ADVISORY", "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29535" }, { "type": "WEB", "url": "https://github.com/tensorflow/tensorflow/commit/efea03b38fb8d3b81762237dc85e579cc5fc6e87" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-463.yaml" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-661.yaml" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-172.yaml" }, { "type": "PACKAGE", "url": "https://github.com/tensorflow/tensorflow" } ], "schema_version": "1.4.0", "severity": [ { "score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", "type": "CVSS_V3" }, { "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N", "type": "CVSS_V4" } ], "summary": "Heap buffer overflow in `QuantizedMul`" }
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.