ghsa-h2wq-prv9-2f56
Vulnerability from github
Published
2022-05-24 22:06
Modified
2022-05-24 22:06
Summary
Missing validation crashes `QuantizeAndDequantizeV4Grad`
Details

Impact

The implementation of tf.raw_ops.QuantizeAndDequantizeV4Grad does not fully validate the input arguments. This results in a CHECK-failure which can be used to trigger a denial of service attack:

```python import tensorflow as tf

tf.raw_ops.QuantizeAndDequantizeV4Grad( gradients=tf.constant(1, shape=[2,2], dtype=tf.float64), input=tf.constant(1, shape=[2,2], dtype=tf.float64), input_min=tf.constant([], shape=[0], dtype=tf.float64), input_max=tf.constant(-10, shape=[], dtype=tf.float64), axis=-1) ```

The code assumes input_min and input_max are scalars but there is no validation for this.

Patches

We have patched the issue in GitHub commit 098e7762d909bac47ce1dbabe6dfd06294cb9d58.

The fix will be included in TensorFlow 2.9.0. We will also cherrypick this commit on TensorFlow 2.8.1, TensorFlow 2.7.2, and TensorFlow 2.6.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Neophytos Christou from Secure Systems Lab at Brown University.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.6.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.7.0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.6.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.7.0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.6.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.7.0"
            },
            {
              "fixed": "2.7.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.8.0"
            },
            {
              "fixed": "2.8.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2022-29192"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-20"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2022-05-24T22:06:26Z",
    "nvd_published_at": "2022-05-20T21:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nThe implementation of [`tf.raw_ops.QuantizeAndDequantizeV4Grad`](https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L148-L226) does not fully validate the input arguments. This results in a `CHECK`-failure which can be used to trigger a denial of service attack:\n\n```python\nimport tensorflow as tf\n\ntf.raw_ops.QuantizeAndDequantizeV4Grad(\n  gradients=tf.constant(1, shape=[2,2], dtype=tf.float64),\n  input=tf.constant(1, shape=[2,2], dtype=tf.float64),\n  input_min=tf.constant([], shape=[0], dtype=tf.float64),\n  input_max=tf.constant(-10, shape=[], dtype=tf.float64),\n  axis=-1)\n```\n\nThe code assumes `input_min` and `input_max` are scalars but there is no validation for this.\n\n### Patches\nWe have patched the issue in GitHub commit [098e7762d909bac47ce1dbabe6dfd06294cb9d58](https://github.com/tensorflow/tensorflow/commit/098e7762d909bac47ce1dbabe6dfd06294cb9d58).\n    \nThe fix will be included in TensorFlow 2.9.0. We will also cherrypick this commit on TensorFlow 2.8.1, TensorFlow 2.7.2, and TensorFlow 2.6.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Neophytos Christou from Secure Systems Lab at Brown University.",
  "id": "GHSA-h2wq-prv9-2f56",
  "modified": "2022-05-24T22:06:26Z",
  "published": "2022-05-24T22:06:26Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-h2wq-prv9-2f56"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2022-29192"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/098e7762d909bac47ce1dbabe6dfd06294cb9d58"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/blob/f3b9bf4c3c0597563b289c0512e98d4ce81f886e/tensorflow/core/kernels/quantize_and_dequantize_op.cc#L148-L226"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.6.4"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.7.2"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.8.1"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.9.0"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
      "type": "CVSS_V3"
    }
  ],
  "summary": "Missing validation crashes `QuantizeAndDequantizeV4Grad`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.