ghsa-8r7c-3cm2-3h8f
Vulnerability from github
Published
2022-02-10 00:33
Modified
2024-11-13 22:49
Summary
Memory leak in Tensorflow
Details

Impact

If a graph node is invalid, TensorFlow can leak memory in the implementation of ImmutableExecutorState::Initialize:

cc Status s = params_.create_kernel(n->properties(), &item->kernel); if (!s.ok()) { item->kernel = nullptr; s = AttachDef(s, *n); return s; }

Here, we set item->kernel to nullptr but it is a simple OpKernel* pointer so the memory that was previously allocated to it would leak.

Patches

We have patched the issue in GitHub commit c79ccba517dbb1a0ccb9b01ee3bd2a63748b60dd. The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.5.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.6.0"
            },
            {
              "fixed": "2.6.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.7.0"
            },
            {
              "fixed": "2.7.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.7.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.5.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.6.0"
            },
            {
              "fixed": "2.6.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.7.0"
            },
            {
              "fixed": "2.7.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.7.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.5.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.6.0"
            },
            {
              "fixed": "2.6.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.7.0"
            },
            {
              "fixed": "2.7.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.7.0"
      ]
    }
  ],
  "aliases": [
    "CVE-2022-23578"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-401"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2022-02-04T20:15:02Z",
    "nvd_published_at": "2022-02-04T23:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nIf a graph node is invalid, TensorFlow can leak memory in the [implementation of `ImmutableExecutorState::Initialize`](https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/common_runtime/immutable_executor_state.cc#L84-L262):\n\n```cc\nStatus s = params_.create_kernel(n-\u003eproperties(), \u0026item-\u003ekernel);\nif (!s.ok()) {\n  item-\u003ekernel = nullptr;\n  s = AttachDef(s, *n);\n  return s;           \n}                     \n```\n\nHere, we set `item-\u003ekernel` to `nullptr` but it is a simple `OpKernel*` pointer so the memory that was previously allocated to it would leak.\n\n### Patches\nWe have patched the issue in GitHub commit [c79ccba517dbb1a0ccb9b01ee3bd2a63748b60dd](https://github.com/tensorflow/tensorflow/commit/c79ccba517dbb1a0ccb9b01ee3bd2a63748b60dd).\nThe fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, TensorFlow 2.6.3, and TensorFlow 2.5.3, as these are also affected and still in supported range.\n\n### For more information \nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.",
  "id": "GHSA-8r7c-3cm2-3h8f",
  "modified": "2024-11-13T22:49:23Z",
  "published": "2022-02-10T00:33:13Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8r7c-3cm2-3h8f"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2022-23578"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/c79ccba517dbb1a0ccb9b01ee3bd2a63748b60dd"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2022-87.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2022-142.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/common_runtime/immutable_executor_state.cc#L84-L262"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:N/AC:L/AT:N/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Memory leak in Tensorflow"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.