GHSA-6F89-8J54-29XF

Vulnerability from github – Published: 2021-05-21 14:26 – Updated: 2024-11-01 17:12
VLAI?
Summary
Heap buffer overflow in `FractionalAvgPoolGrad`
Details

Impact

The implementation of tf.raw_ops.FractionalAvgPoolGrad is vulnerable to a heap buffer overflow:

import tensorflow as tf

orig_input_tensor_shape = tf.constant([1, 3, 2, 3], shape=[4], dtype=tf.int64)
out_backprop = tf.constant([2], shape=[1, 1, 1, 1], dtype=tf.int64)
row_pooling_sequence = tf.constant([1], shape=[1], dtype=tf.int64)
col_pooling_sequence = tf.constant([1], shape=[1], dtype=tf.int64)


tf.raw_ops.FractionalAvgPoolGrad(
  orig_input_tensor_shape=orig_input_tensor_shape, out_backprop=out_backprop,
  row_pooling_sequence=row_pooling_sequence,
  col_pooling_sequence=col_pooling_sequence, overlapping=False)

The implementation fails to validate that the pooling sequence arguments have enough elements as required by the out_backprop tensor shape.

Patches

We have patched the issue in GitHub commit 12c727cee857fa19be717f336943d95fca4ffe4f.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.

Show details on source website

{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2021-29578"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-119",
      "CWE-787"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-05-18T18:08:57Z",
    "nvd_published_at": "2021-05-14T20:15:00Z",
    "severity": "LOW"
  },
  "details": "### Impact\nThe implementation of `tf.raw_ops.FractionalAvgPoolGrad` is vulnerable to a heap buffer overflow:\n  \n```python\nimport tensorflow as tf\n\norig_input_tensor_shape = tf.constant([1, 3, 2, 3], shape=[4], dtype=tf.int64)\nout_backprop = tf.constant([2], shape=[1, 1, 1, 1], dtype=tf.int64)\nrow_pooling_sequence = tf.constant([1], shape=[1], dtype=tf.int64)\ncol_pooling_sequence = tf.constant([1], shape=[1], dtype=tf.int64)\n\n\ntf.raw_ops.FractionalAvgPoolGrad(\n  orig_input_tensor_shape=orig_input_tensor_shape, out_backprop=out_backprop,\n  row_pooling_sequence=row_pooling_sequence,\n  col_pooling_sequence=col_pooling_sequence, overlapping=False)\n```\n\nThe [implementation](https://github.com/tensorflow/tensorflow/blob/dcba796a28364d6d7f003f6fe733d82726dda713/tensorflow/core/kernels/fractional_avg_pool_op.cc#L216) fails to validate that the pooling sequence arguments have enough elements as required by the `out_backprop` tensor shape.\n\n### Patches\nWe have patched the issue in GitHub commit [12c727cee857fa19be717f336943d95fca4ffe4f](https://github.com/tensorflow/tensorflow/commit/12c727cee857fa19be717f336943d95fca4ffe4f).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.",
  "id": "GHSA-6f89-8j54-29xf",
  "modified": "2024-11-01T17:12:18Z",
  "published": "2021-05-21T14:26:21Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-6f89-8j54-29xf"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29578"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/12c727cee857fa19be717f336943d95fca4ffe4f"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-506.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-704.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-215.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Heap buffer overflow in `FractionalAvgPoolGrad`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…