ghsa-27rc-728f-x5w2
Vulnerability from github
Published
2022-11-21 21:54
Modified
2022-11-21 21:54
Summary
`CHECK` fail via inputs in `SdcaOptimizer`
Details

Impact

Inputs dense_features or example_state_data not of rank 2 will trigger a CHECK fail in SdcaOptimizer.

```python import tensorflow as tf

tf.raw_ops.SdcaOptimizer( sparse_example_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)], sparse_feature_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)], sparse_feature_values=8 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)], dense_features=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)], example_weights=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100), example_labels=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100), sparse_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)], sparse_weights=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)], dense_weights=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)], example_state_data=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100), loss_type="squared_loss", l1=0.0, l2=0.0, num_loss_partitions=1, num_inner_iterations=1, adaptative=False,) ```

Patches

We have patched the issue in GitHub commit 80ff197d03db2a70c6a111f97dcdacad1b0babfa.

The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Zizhuang Deng of IIE, UCAS

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.8.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.10.0"
            },
            {
              "fixed": "2.10.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.8.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.8.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.9.0"
            },
            {
              "fixed": "2.9.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.10.0"
            },
            {
              "fixed": "2.10.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.10.0"
            },
            {
              "fixed": "2.10.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2022-41899"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-20",
      "CWE-617"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2022-11-21T21:54:26Z",
    "nvd_published_at": "2022-11-18T22:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nInputs `dense_features` or `example_state_data` not of rank 2 will trigger a `CHECK` fail in [`SdcaOptimizer`](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sdca_internal.cc).\n\n```python\nimport tensorflow as tf\n\ntf.raw_ops.SdcaOptimizer(\n    sparse_example_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],\n    sparse_feature_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],\n    sparse_feature_values=8 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],\n    dense_features=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],\n    example_weights=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),\n    example_labels=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),\n    sparse_indices=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.int64, maxval=100)],\n    sparse_weights=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],\n    dense_weights=4 * [tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100)],\n    example_state_data=tf.random.uniform([5,5,5,3], dtype=tf.dtypes.float32, maxval=100),\n    loss_type=\"squared_loss\",\n    l1=0.0,\n    l2=0.0,\n    num_loss_partitions=1,\n    num_inner_iterations=1,\n    adaptative=False,)\n```\n\n### Patches\nWe have patched the issue in GitHub commit [80ff197d03db2a70c6a111f97dcdacad1b0babfa](https://github.com/tensorflow/tensorflow/commit/80ff197d03db2a70c6a111f97dcdacad1b0babfa).\n\nThe fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1, 2.9.3, and TensorFlow 2.8.4, as these are also affected and still in supported range.\n\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n\n### Attribution\nThis vulnerability has been reported by Zizhuang Deng of IIE, UCAS\n",
  "id": "GHSA-27rc-728f-x5w2",
  "modified": "2022-11-21T21:54:26Z",
  "published": "2022-11-21T21:54:26Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27rc-728f-x5w2"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2022-41899"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/80ff197d03db2a70c6a111f97dcdacad1b0babfa"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/sdca_internal.cc"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
      "type": "CVSS_V3"
    }
  ],
  "summary": "`CHECK` fail via inputs in `SdcaOptimizer`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.