ghsa-27j5-4p9v-pp67
Vulnerability from github
Published
2021-08-25 14:43
Modified
2024-11-13 16:13
Summary
`std::abort` raised from `TensorListReserve`
Details

Impact

Providing a negative element to num_elements list argument of tf.raw_ops.TensorListReserve causes the runtime to abort the process due to reallocating a std::vector to have a negative number of elements:

```python import tensorflow as tf

tf.raw_ops.TensorListReserve( element_shape = tf.constant([1]), num_elements=tf.constant([-1]), element_dtype = tf.int32) ```

The implementation calls std::vector.resize() with the new size controlled by input given by the user, without checking that this input is valid.

Patches

We have patched the issue in GitHub commit 8a6e874437670045e6c7dc6154c7412b4a2135e2.

The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by members of the Aivul Team from Qihoo 360.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.3.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.5.0"
            },
            {
              "fixed": "2.5.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.5.0"
      ]
    }
  ],
  "aliases": [
    "CVE-2021-37644"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-617"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-08-23T19:16:53Z",
    "nvd_published_at": "2021-08-12T21:15:00Z",
    "severity": "MODERATE"
  },
  "details": "### Impact\nProviding a negative element to `num_elements` list argument of  `tf.raw_ops.TensorListReserve` causes the runtime to abort the process due to reallocating a `std::vector` to have a negative number of elements:\n\n```python\nimport tensorflow as tf\n\ntf.raw_ops.TensorListReserve(\n  element_shape = tf.constant([1]),\n  num_elements=tf.constant([-1]),\n  element_dtype = tf.int32)\n```\n\nThe [implementation](https://github.com/tensorflow/tensorflow/blob/8d72537c6abf5a44103b57b9c2e22c14f5f49698/tensorflow/core/kernels/list_kernels.cc#L312) calls `std::vector.resize()` with the new size controlled by input given by the user, without checking that this input is valid.\n\n### Patches\nWe have patched the issue in GitHub commit [8a6e874437670045e6c7dc6154c7412b4a2135e2](https://github.com/tensorflow/tensorflow/commit/8a6e874437670045e6c7dc6154c7412b4a2135e2).\n\nThe fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.\n\n### For more information \nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by members of the Aivul Team from Qihoo 360.",
  "id": "GHSA-27j5-4p9v-pp67",
  "modified": "2024-11-13T16:13:05Z",
  "published": "2021-08-25T14:43:40Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-27j5-4p9v-pp67"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-37644"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/8a6e874437670045e6c7dc6154c7412b4a2135e2"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-557.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-755.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-266.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "`std::abort` raised from `TensorListReserve`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.