CVE-2024-58340 (GCVE-0-2024-58340)

Vulnerability from cvelistv5 – Published: 2026-01-12 23:05 – Updated: 2026-01-12 23:05
VLAI?
Title
LangChain <= 0.3.1 MRKLOutputParser ReDoS
Summary
LangChain versions up to and including 0.3.1 contain a regular expression denial-of-service (ReDoS) vulnerability in the MRKLOutputParser.parse() method (libs/langchain/langchain/agents/mrkl/output_parser.py). The parser applies a backtracking-prone regular expression when extracting tool actions from model output. An attacker who can supply or influence the parsed text (for example via prompt injection in downstream applications that pass LLM output directly into MRKLOutputParser.parse()) can trigger excessive CPU consumption by providing a crafted payload, causing significant parsing delays and a denial-of-service condition.
CWE
  • CWE-1333 - Inefficient Regular Expression Complexity
Assigner
Impacted products
Vendor Product Version
LangChain AI LangChain Affected: 0 , ≤ 0.3.1 (semver)
Create a notification for this product.
Credits
LifeTeam2024
Show details on NVD website

{
  "containers": {
    "cna": {
      "affected": [
        {
          "defaultStatus": "unknown",
          "product": "LangChain",
          "repo": "https://github.com/langchain-ai/langchain",
          "vendor": "LangChain AI",
          "versions": [
            {
              "lessThanOrEqual": "0.3.1",
              "status": "affected",
              "version": "0",
              "versionType": "semver"
            }
          ]
        }
      ],
      "credits": [
        {
          "lang": "en",
          "type": "finder",
          "value": "LifeTeam2024"
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "supportingMedia": [
            {
              "base64": false,
              "type": "text/html",
              "value": "LangChain versions up to and including 0.3.1 contain a regular expression denial-of-service (ReDoS) vulnerability in the MRKLOutputParser.parse() method (libs/langchain/langchain/agents/mrkl/output_parser.py). The parser applies a backtracking-prone regular expression when extracting tool actions from model output. An attacker who can supply or influence the parsed text (for example via prompt injection in downstream applications that pass LLM output directly into MRKLOutputParser.parse()) can trigger excessive CPU consumption by providing a crafted payload, causing significant parsing delays and a denial-of-service condition."
            }
          ],
          "value": "LangChain versions up to and including 0.3.1 contain a regular expression denial-of-service (ReDoS) vulnerability in the MRKLOutputParser.parse() method (libs/langchain/langchain/agents/mrkl/output_parser.py). The parser applies a backtracking-prone regular expression when extracting tool actions from model output. An attacker who can supply or influence the parsed text (for example via prompt injection in downstream applications that pass LLM output directly into MRKLOutputParser.parse()) can trigger excessive CPU consumption by providing a crafted payload, causing significant parsing delays and a denial-of-service condition."
        }
      ],
      "metrics": [
        {
          "cvssV4_0": {
            "Automatable": "NOT_DEFINED",
            "Recovery": "NOT_DEFINED",
            "Safety": "NOT_DEFINED",
            "attackComplexity": "LOW",
            "attackRequirements": "NONE",
            "attackVector": "NETWORK",
            "baseScore": 8.7,
            "baseSeverity": "HIGH",
            "exploitMaturity": "NOT_DEFINED",
            "privilegesRequired": "NONE",
            "providerUrgency": "NOT_DEFINED",
            "subAvailabilityImpact": "NONE",
            "subConfidentialityImpact": "NONE",
            "subIntegrityImpact": "NONE",
            "userInteraction": "NONE",
            "valueDensity": "NOT_DEFINED",
            "vectorString": "CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N",
            "version": "4.0",
            "vulnAvailabilityImpact": "HIGH",
            "vulnConfidentialityImpact": "NONE",
            "vulnIntegrityImpact": "NONE",
            "vulnerabilityResponseEffort": "NOT_DEFINED"
          },
          "format": "CVSS",
          "scenarios": [
            {
              "lang": "en",
              "value": "GENERAL"
            }
          ]
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-1333",
              "description": "CWE-1333 Inefficient Regular Expression Complexity",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2026-01-12T23:05:00.801Z",
        "orgId": "83251b91-4cc7-4094-a5c7-464a1b83ea10",
        "shortName": "VulnCheck"
      },
      "references": [
        {
          "tags": [
            "technical-description",
            "exploit"
          ],
          "url": "https://huntr.com/bounties/e7ece02c-d4bb-4166-8e08-6baf4f8845bb"
        },
        {
          "tags": [
            "product"
          ],
          "url": "https://www.langchain.com/"
        },
        {
          "tags": [
            "product"
          ],
          "url": "https://github.com/langchain-ai/langchain"
        },
        {
          "tags": [
            "third-party-advisory"
          ],
          "url": "https://www.vulncheck.com/advisories/langchain-mrkloutputparser-redos"
        }
      ],
      "source": {
        "discovery": "UNKNOWN"
      },
      "title": "LangChain \u003c= 0.3.1 MRKLOutputParser ReDoS",
      "x_generator": {
        "engine": "Vulnogram 0.5.0"
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "83251b91-4cc7-4094-a5c7-464a1b83ea10",
    "assignerShortName": "VulnCheck",
    "cveId": "CVE-2024-58340",
    "datePublished": "2026-01-12T23:05:00.801Z",
    "dateReserved": "2026-01-09T20:28:41.285Z",
    "dateUpdated": "2026-01-12T23:05:00.801Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.2",
  "vulnerability-lookup:meta": {
    "nvd": "{\"cve\":{\"id\":\"CVE-2024-58340\",\"sourceIdentifier\":\"disclosure@vulncheck.com\",\"published\":\"2026-01-12T23:15:51.780\",\"lastModified\":\"2026-01-13T14:03:18.990\",\"vulnStatus\":\"Awaiting Analysis\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"LangChain versions up to and including 0.3.1 contain a regular expression denial-of-service (ReDoS) vulnerability in the MRKLOutputParser.parse() method (libs/langchain/langchain/agents/mrkl/output_parser.py). The parser applies a backtracking-prone regular expression when extracting tool actions from model output. An attacker who can supply or influence the parsed text (for example via prompt injection in downstream applications that pass LLM output directly into MRKLOutputParser.parse()) can trigger excessive CPU consumption by providing a crafted payload, causing significant parsing delays and a denial-of-service condition.\"}],\"metrics\":{\"cvssMetricV40\":[{\"source\":\"disclosure@vulncheck.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"4.0\",\"vectorString\":\"CVSS:4.0/AV:N/AC:L/AT:N/PR:N/UI:N/VC:N/VI:N/VA:H/SC:N/SI:N/SA:N/E:X/CR:X/IR:X/AR:X/MAV:X/MAC:X/MAT:X/MPR:X/MUI:X/MVC:X/MVI:X/MVA:X/MSC:X/MSI:X/MSA:X/S:X/AU:X/R:X/V:X/RE:X/U:X\",\"baseScore\":8.7,\"baseSeverity\":\"HIGH\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"attackRequirements\":\"NONE\",\"privilegesRequired\":\"NONE\",\"userInteraction\":\"NONE\",\"vulnConfidentialityImpact\":\"NONE\",\"vulnIntegrityImpact\":\"NONE\",\"vulnAvailabilityImpact\":\"HIGH\",\"subConfidentialityImpact\":\"NONE\",\"subIntegrityImpact\":\"NONE\",\"subAvailabilityImpact\":\"NONE\",\"exploitMaturity\":\"NOT_DEFINED\",\"confidentialityRequirement\":\"NOT_DEFINED\",\"integrityRequirement\":\"NOT_DEFINED\",\"availabilityRequirement\":\"NOT_DEFINED\",\"modifiedAttackVector\":\"NOT_DEFINED\",\"modifiedAttackComplexity\":\"NOT_DEFINED\",\"modifiedAttackRequirements\":\"NOT_DEFINED\",\"modifiedPrivilegesRequired\":\"NOT_DEFINED\",\"modifiedUserInteraction\":\"NOT_DEFINED\",\"modifiedVulnConfidentialityImpact\":\"NOT_DEFINED\",\"modifiedVulnIntegrityImpact\":\"NOT_DEFINED\",\"modifiedVulnAvailabilityImpact\":\"NOT_DEFINED\",\"modifiedSubConfidentialityImpact\":\"NOT_DEFINED\",\"modifiedSubIntegrityImpact\":\"NOT_DEFINED\",\"modifiedSubAvailabilityImpact\":\"NOT_DEFINED\",\"Safety\":\"NOT_DEFINED\",\"Automatable\":\"NOT_DEFINED\",\"Recovery\":\"NOT_DEFINED\",\"valueDensity\":\"NOT_DEFINED\",\"vulnerabilityResponseEffort\":\"NOT_DEFINED\",\"providerUrgency\":\"NOT_DEFINED\"}}]},\"weaknesses\":[{\"source\":\"disclosure@vulncheck.com\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-1333\"}]}],\"references\":[{\"url\":\"https://github.com/langchain-ai/langchain\",\"source\":\"disclosure@vulncheck.com\"},{\"url\":\"https://huntr.com/bounties/e7ece02c-d4bb-4166-8e08-6baf4f8845bb\",\"source\":\"disclosure@vulncheck.com\"},{\"url\":\"https://www.langchain.com/\",\"source\":\"disclosure@vulncheck.com\"},{\"url\":\"https://www.vulncheck.com/advisories/langchain-mrkloutputparser-redos\",\"source\":\"disclosure@vulncheck.com\"}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…