cve-2022-41887
Vulnerability from cvelistv5
Published
2022-11-18 00:00
Modified
2024-08-03 12:56
Summary
TensorFlow is an open source platform for machine learning. `tf.keras.losses.poisson` receives a `y_pred` and `y_true` that are passed through `functor::mul` in `BinaryOp`. If the resulting dimensions overflow an `int32`, TensorFlow will crash due to a size mismatch during broadcast assignment. We have patched the issue in GitHub commit c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1 and 2.9.3, as these are also affected and still in supported range. However, we will not cherrypick this commit into TensorFlow 2.8.x, as it depends on Eigen behavior that changed between 2.8 and 2.9.
Impacted products
Vendor Product Version
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T12:56:38.355Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8fvv-46hw-vpg3"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/cwise_ops_common.h"
          },
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/losses.py"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003e= 2.10.0, \u003c 2.10.1"
            },
            {
              "status": "affected",
              "version": "\u003c 2.9.3"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. `tf.keras.losses.poisson` receives a `y_pred` and `y_true` that are passed through `functor::mul` in `BinaryOp`. If the resulting dimensions overflow an `int32`, TensorFlow will crash due to a size mismatch during broadcast assignment. We have patched the issue in GitHub commit c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1 and 2.9.3, as these are also affected and still in supported range. However, we will not cherrypick this commit into TensorFlow 2.8.x, as it depends on Eigen behavior that changed between 2.8 and 2.9."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 4.8,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "REQUIRED",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-131",
              "description": "CWE-131: Incorrect Calculation of Buffer Size",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-11-19T00:00:00",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8fvv-46hw-vpg3"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/commit/c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/cwise_ops_common.h"
        },
        {
          "url": "https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/losses.py"
        }
      ],
      "source": {
        "advisory": "GHSA-8fvv-46hw-vpg3",
        "discovery": "UNKNOWN"
      },
      "title": "Overflow in `tf.keras.losses.poisson` in Tensorflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-41887",
    "datePublished": "2022-11-18T00:00:00",
    "dateReserved": "2022-09-30T00:00:00",
    "dateUpdated": "2024-08-03T12:56:38.355Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "meta": {
    "nvd": "{\"cve\":{\"id\":\"CVE-2022-41887\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2022-11-18T22:15:14.817\",\"lastModified\":\"2024-11-21T07:23:59.770\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an open source platform for machine learning. `tf.keras.losses.poisson` receives a `y_pred` and `y_true` that are passed through `functor::mul` in `BinaryOp`. If the resulting dimensions overflow an `int32`, TensorFlow will crash due to a size mismatch during broadcast assignment. We have patched the issue in GitHub commit c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c. The fix will be included in TensorFlow 2.11. We will also cherrypick this commit on TensorFlow 2.10.1 and 2.9.3, as these are also affected and still in supported range. However, we will not cherrypick this commit into TensorFlow 2.8.x, as it depends on Eigen behavior that changed between 2.8 and 2.9.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de c\u00f3digo abierto para aprendizaje autom\u00e1tico. `tf.keras.losses.poisson` recibe `y_pred` y `y_true` que se pasan a trav\u00e9s de `functor::mul` en `BinaryOp`. Si las dimensiones resultantes desbordan un `int32`, TensorFlow fallar\u00e1 debido a una discrepancia de tama\u00f1o durante la asignaci\u00f3n de transmisi\u00f3n. Hemos solucionado el problema en el commit de GitHub c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c. La soluci\u00f3n se incluir\u00e1 en TensorFlow 2.11. Tambi\u00e9n seleccionaremos este commit en TensorFlow 2.10.1 y 2.9.3, ya que tambi\u00e9n se ven afectados y a\u00fan se encuentran en el rango admitido. Sin embargo, no seleccionaremos este commit en TensorFlow 2.8.x, ya que depende del comportamiento propio que cambi\u00f3 entre 2.8 y 2.9.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:H/PR:L/UI:R/S:U/C:N/I:N/A:H\",\"baseScore\":4.8,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"REQUIRED\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.2,\"impactScore\":3.6},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":7.5,\"baseSeverity\":\"HIGH\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"NONE\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":3.9,\"impactScore\":3.6}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-131\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.9.0\",\"versionEndExcluding\":\"2.9.3\",\"matchCriteriaId\":\"9057B403-719C-4F10-BAB6-67F84786A89E\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.10.0:*:*:*:*:*:*:*\",\"matchCriteriaId\":\"6AE6CFC4-0232-4E1C-960D-268C87788735\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/cwise_ops_common.h\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/losses.py\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8fvv-46hw-vpg3\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/core/kernels/cwise_ops_common.h\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/keras/losses.py\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/c5b30379ba87cbe774b08ac50c1f6d36df4ebb7c\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-8fvv-46hw-vpg3\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.