cve-2022-35973
Vulnerability from cvelistv5
Published
2022-09-16 21:00
Modified
2024-08-03 09:51
Summary
TensorFlow is an open source platform for machine learning. If `QuantizedMatMul` is given nonscalar input for: `min_a`, `max_a`, `min_b`, or `max_b` It gives a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit aca766ac7693bf29ed0df55ad6bfcc78f35e7f48. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.
Impacted products
Vendor Product Version
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T09:51:59.641Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-689c-r7h2-fv9v"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/aca766ac7693bf29ed0df55ad6bfcc78f35e7f48"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.7.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.8.0, \u003c 2.8.1"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.9.0, \u003c 2.9.1"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an open source platform for machine learning. If `QuantizedMatMul` is given nonscalar input for: `min_a`, `max_a`, `min_b`, or `max_b` It gives a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit aca766ac7693bf29ed0df55ad6bfcc78f35e7f48. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20: Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2022-09-16T21:00:14",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-689c-r7h2-fv9v"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/aca766ac7693bf29ed0df55ad6bfcc78f35e7f48"
        }
      ],
      "source": {
        "advisory": "GHSA-689c-r7h2-fv9v",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in `QuantizedMatMul` in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2022-35973",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in `QuantizedMatMul` in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.7.2"
                          },
                          {
                            "version_value": "\u003e= 2.8.0, \u003c 2.8.1"
                          },
                          {
                            "version_value": "\u003e= 2.9.0, \u003c 2.9.1"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an open source platform for machine learning. If `QuantizedMatMul` is given nonscalar input for: `min_a`, `max_a`, `min_b`, or `max_b` It gives a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit aca766ac7693bf29ed0df55ad6bfcc78f35e7f48. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20: Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-689c-r7h2-fv9v",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-689c-r7h2-fv9v"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/aca766ac7693bf29ed0df55ad6bfcc78f35e7f48",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/aca766ac7693bf29ed0df55ad6bfcc78f35e7f48"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-689c-r7h2-fv9v",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2022-35973",
    "datePublished": "2022-09-16T21:00:14",
    "dateReserved": "2022-07-15T00:00:00",
    "dateUpdated": "2024-08-03T09:51:59.641Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "meta": {
    "nvd": "{\"cve\":{\"id\":\"CVE-2022-35973\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2022-09-16T21:15:09.490\",\"lastModified\":\"2024-11-21T07:12:05.223\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an open source platform for machine learning. If `QuantizedMatMul` is given nonscalar input for: `min_a`, `max_a`, `min_b`, or `max_b` It gives a segfault that can be used to trigger a denial of service attack. We have patched the issue in GitHub commit aca766ac7693bf29ed0df55ad6bfcc78f35e7f48. The fix will be included in TensorFlow 2.10.0. We will also cherrypick this commit on TensorFlow 2.9.1, TensorFlow 2.8.1, and TensorFlow 2.7.2, as these are also affected and still in supported range. There are no known workarounds for this issue.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. Si \\\"QuantizedMatMul\\\" recibe una entrada no escalar para: \\\"min_a\\\", \\\"max_a\\\", \\\"min_b\\\", o \\\"max_b\\\" resulta en un segfault que puede ser usado para desencadenar un ataque de denegaci\u00f3n de servicio. Hemos parcheado el problema en el commit de GitHub aca766ac7693bf29ed0df55ad6bfcc78f35e7f48. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.10.0. Tambi\u00e9n seleccionaremos este compromiso en TensorFlow versi\u00f3n 2.9.1, TensorFlow versi\u00f3n 2.8.1, y TensorFlow versi\u00f3n 2.7.2, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido. No se presentan mitigaciones conocidas para este problema\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.9,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"NONE\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":2.2,\"impactScore\":3.6},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":7.5,\"baseSeverity\":\"HIGH\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"NONE\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":3.9,\"impactScore\":3.6}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-20\"}]},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"NVD-CWE-noinfo\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.7.0\",\"versionEndExcluding\":\"2.7.2\",\"matchCriteriaId\":\"C4DFBF2D-5283-42F6-8800-D653BFA5CE82\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.8.0\",\"versionEndExcluding\":\"2.8.1\",\"matchCriteriaId\":\"0F9D273D-02DC-441E-AA91-EAC8DEAA4B44\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.9.0\",\"versionEndExcluding\":\"2.9.1\",\"matchCriteriaId\":\"FE4F8A81-6CC2-4F7F-9602-C170FDD926E7\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.10:rc0:*:*:*:*:*:*\",\"matchCriteriaId\":\"1DBFBCE2-0A01-4575-BE45-6775ABFB8B28\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.10:rc1:*:*:*:*:*:*\",\"matchCriteriaId\":\"89806CF9-E423-4CA6-A01A-8175C260CB24\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.10:rc2:*:*:*:*:*:*\",\"matchCriteriaId\":\"F2B80690-A257-4E16-BD27-9AE045BC56ED\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.10:rc3:*:*:*:*:*:*\",\"matchCriteriaId\":\"F335F9A4-5AB8-4E53-BC18-E01F7C653E5E\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/aca766ac7693bf29ed0df55ad6bfcc78f35e7f48\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-689c-r7h2-fv9v\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/aca766ac7693bf29ed0df55ad6bfcc78f35e7f48\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-689c-r7h2-fv9v\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.