cve-2021-41219
Vulnerability from cvelistv5
Published
2021-11-05 20:50
Modified
2024-08-04 03:08
Severity ?
EPSS score ?
Summary
TensorFlow is an open source platform for machine learning. In affected versions the code for sparse matrix multiplication is vulnerable to undefined behavior via binding a reference to `nullptr`. This occurs whenever the dimensions of `a` or `b` are 0 or less. In the case on one of these is 0, an empty output tensor should be allocated (to conserve the invariant that output tensors are always allocated when the operation is successful) but nothing should be written to it (that is, we should return early from the kernel implementation). Otherwise, attempts to write to this empty tensor would result in heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.
References
▼ | URL | Tags | |
---|---|---|---|
security-advisories@github.com | https://github.com/tensorflow/tensorflow/commit/e6cf28c72ba2eb949ca950d834dd6d66bb01cfae | Patch, Third Party Advisory | |
security-advisories@github.com | https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4f99-p9c2-3j8x | Exploit, Patch, Third Party Advisory | |
af854a3a-2127-422b-91ae-364da2661108 | https://github.com/tensorflow/tensorflow/commit/e6cf28c72ba2eb949ca950d834dd6d66bb01cfae | Patch, Third Party Advisory | |
af854a3a-2127-422b-91ae-364da2661108 | https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4f99-p9c2-3j8x | Exploit, Patch, Third Party Advisory |
Impacted products
Vendor | Product | Version | |
---|---|---|---|
▼ | tensorflow | tensorflow |
Version: >= 2.6.0, < 2.6.1 Version: >= 2.5.0, < 2.5.2 Version: < 2.4.4 |
|
{ "containers": { "adp": [ { "providerMetadata": { "dateUpdated": "2024-08-04T03:08:31.583Z", "orgId": "af854a3a-2127-422b-91ae-364da2661108", "shortName": "CVE" }, "references": [ { "tags": [ "x_refsource_CONFIRM", "x_transferred" ], "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4f99-p9c2-3j8x" }, { "tags": [ "x_refsource_MISC", "x_transferred" ], "url": "https://github.com/tensorflow/tensorflow/commit/e6cf28c72ba2eb949ca950d834dd6d66bb01cfae" } ], "title": "CVE Program Container" } ], "cna": { "affected": [ { "product": "tensorflow", "vendor": "tensorflow", "versions": [ { "status": "affected", "version": "\u003e= 2.6.0, \u003c 2.6.1" }, { "status": "affected", "version": "\u003e= 2.5.0, \u003c 2.5.2" }, { "status": "affected", "version": "\u003c 2.4.4" } ] } ], "descriptions": [ { "lang": "en", "value": "TensorFlow is an open source platform for machine learning. In affected versions the code for sparse matrix multiplication is vulnerable to undefined behavior via binding a reference to `nullptr`. This occurs whenever the dimensions of `a` or `b` are 0 or less. In the case on one of these is 0, an empty output tensor should be allocated (to conserve the invariant that output tensors are always allocated when the operation is successful) but nothing should be written to it (that is, we should return early from the kernel implementation). Otherwise, attempts to write to this empty tensor would result in heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range." } ], "metrics": [ { "cvssV3_1": { "attackComplexity": "LOW", "attackVector": "LOCAL", "availabilityImpact": "HIGH", "baseScore": 7.8, "baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "scope": "UNCHANGED", "userInteraction": "NONE", "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1" } } ], "problemTypes": [ { "descriptions": [ { "cweId": "CWE-824", "description": "CWE-824: Access of Uninitialized Pointer", "lang": "en", "type": "CWE" } ] } ], "providerMetadata": { "dateUpdated": "2021-11-05T20:50:16", "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa", "shortName": "GitHub_M" }, "references": [ { "tags": [ "x_refsource_CONFIRM" ], "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4f99-p9c2-3j8x" }, { "tags": [ "x_refsource_MISC" ], "url": "https://github.com/tensorflow/tensorflow/commit/e6cf28c72ba2eb949ca950d834dd6d66bb01cfae" } ], "source": { "advisory": "GHSA-4f99-p9c2-3j8x", "discovery": "UNKNOWN" }, "title": "Undefined behavior via `nullptr` reference binding in sparse matrix multiplication", "x_legacyV4Record": { "CVE_data_meta": { "ASSIGNER": "security-advisories@github.com", "ID": "CVE-2021-41219", "STATE": "PUBLIC", "TITLE": "Undefined behavior via `nullptr` reference binding in sparse matrix multiplication" }, "affects": { "vendor": { "vendor_data": [ { "product": { "product_data": [ { "product_name": "tensorflow", "version": { "version_data": [ { "version_value": "\u003e= 2.6.0, \u003c 2.6.1" }, { "version_value": "\u003e= 2.5.0, \u003c 2.5.2" }, { "version_value": "\u003c 2.4.4" } ] } } ] }, "vendor_name": "tensorflow" } ] } }, "data_format": "MITRE", "data_type": "CVE", "data_version": "4.0", "description": { "description_data": [ { "lang": "eng", "value": "TensorFlow is an open source platform for machine learning. In affected versions the code for sparse matrix multiplication is vulnerable to undefined behavior via binding a reference to `nullptr`. This occurs whenever the dimensions of `a` or `b` are 0 or less. In the case on one of these is 0, an empty output tensor should be allocated (to conserve the invariant that output tensors are always allocated when the operation is successful) but nothing should be written to it (that is, we should return early from the kernel implementation). Otherwise, attempts to write to this empty tensor would result in heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range." } ] }, "impact": { "cvss": { "attackComplexity": "LOW", "attackVector": "LOCAL", "availabilityImpact": "HIGH", "baseScore": 7.8, "baseSeverity": "HIGH", "confidentialityImpact": "HIGH", "integrityImpact": "HIGH", "privilegesRequired": "LOW", "scope": "UNCHANGED", "userInteraction": "NONE", "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H", "version": "3.1" } }, "problemtype": { "problemtype_data": [ { "description": [ { "lang": "eng", "value": "CWE-824: Access of Uninitialized Pointer" } ] } ] }, "references": { "reference_data": [ { "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4f99-p9c2-3j8x", "refsource": "CONFIRM", "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4f99-p9c2-3j8x" }, { "name": "https://github.com/tensorflow/tensorflow/commit/e6cf28c72ba2eb949ca950d834dd6d66bb01cfae", "refsource": "MISC", "url": "https://github.com/tensorflow/tensorflow/commit/e6cf28c72ba2eb949ca950d834dd6d66bb01cfae" } ] }, "source": { "advisory": "GHSA-4f99-p9c2-3j8x", "discovery": "UNKNOWN" } } } }, "cveMetadata": { "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa", "assignerShortName": "GitHub_M", "cveId": "CVE-2021-41219", "datePublished": "2021-11-05T20:50:17", "dateReserved": "2021-09-15T00:00:00", "dateUpdated": "2024-08-04T03:08:31.583Z", "state": "PUBLISHED" }, "dataType": "CVE_RECORD", "dataVersion": "5.1", "meta": { "nvd": "{\"cve\":{\"id\":\"CVE-2021-41219\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-11-05T21:15:09.137\",\"lastModified\":\"2024-11-21T06:25:48.520\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an open source platform for machine learning. In affected versions the code for sparse matrix multiplication is vulnerable to undefined behavior via binding a reference to `nullptr`. This occurs whenever the dimensions of `a` or `b` are 0 or less. In the case on one of these is 0, an empty output tensor should be allocated (to conserve the invariant that output tensors are always allocated when the operation is successful) but nothing should be written to it (that is, we should return early from the kernel implementation). Otherwise, attempts to write to this empty tensor would result in heap OOB access. The fix will be included in TensorFlow 2.7.0. We will also cherrypick this commit on TensorFlow 2.6.1, TensorFlow 2.5.2, and TensorFlow 2.4.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de c\u00f3digo abierto para el aprendizaje autom\u00e1tico. En las versiones afectadas el c\u00f3digo para la multiplicaci\u00f3n de matrices dispersas es vulnerable a un comportamiento indefinido por medio de la vinculaci\u00f3n de una referencia a \\\"nullptr\\\". Esto ocurre siempre que las dimensiones de \\\"a\\\" o \\\"b\\\" sean 0 o menos. En el caso de que una de ellas sea 0, es debido asignar un tensor de salida vac\u00edo (para conservar el invariante de que los tensores de salida siempre se asignan cuando la operaci\u00f3n presenta \u00e9xito) pero no es debido escribir nada en \u00e9l (es decir, debemos regresar antes de tiempo de la implementaci\u00f3n del n\u00facleo). De lo contrario, los intentos de escribir en este tensor vac\u00edo resultar\u00edan en un acceso OOB a la pila. La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.7.0. Tambi\u00e9n ser\u00e1 incluida este commit en TensorFlow versi\u00f3n 2.6.1, TensorFlow versi\u00f3n 2.5.2, y TensorFlow versi\u00f3n 2.4.4, ya que estos tambi\u00e9n est\u00e1n afectados y todav\u00eda est\u00e1n en el rango admitido\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\",\"baseScore\":7.8,\"baseSeverity\":\"HIGH\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":5.9},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H\",\"baseScore\":7.8,\"baseSeverity\":\"HIGH\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"HIGH\",\"integrityImpact\":\"HIGH\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":5.9}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:P/I:P/A:P\",\"baseScore\":4.6,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"PARTIAL\",\"integrityImpact\":\"PARTIAL\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"MEDIUM\",\"exploitabilityScore\":3.9,\"impactScore\":6.4,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-824\"}]},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-125\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"2.4.4\",\"matchCriteriaId\":\"455FB550-4C9C-4BD6-9F76-A627B62AB332\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.5.0\",\"versionEndExcluding\":\"2.5.2\",\"matchCriteriaId\":\"035CDF63-1548-4FB4-B8A9-B8D328FAF910\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:*:*:*:*:*:*:*\",\"matchCriteriaId\":\"651EA851-E660-4E53-9F3E-B6B69D91326B\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/e6cf28c72ba2eb949ca950d834dd6d66bb01cfae\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4f99-p9c2-3j8x\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/e6cf28c72ba2eb949ca950d834dd6d66bb01cfae\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-4f99-p9c2-3j8x\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}" } }
Loading…
Loading…
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.