cve-2020-26270
Vulnerability from cvelistv5
Published
2020-12-10 22:10
Modified
2024-08-04 15:56
Summary
In affected versions of TensorFlow running an LSTM/GRU model where the LSTM/GRU layer receives an input with zero-length results in a CHECK failure when using the CUDA backend. This can result in a query-of-death vulnerability, via denial of service, if users can control the input to the layer. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
Impacted products
Vendor Product Version
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T15:56:03.807Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m648-33qf-v3gp"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/14755416e364f17fb1870882fa778c7fec7f16e3"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.5"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In affected versions of TensorFlow running an LSTM/GRU model where the LSTM/GRU layer receives an input with zero-length results in a CHECK failure when using the CUDA backend. This can result in a query-of-death vulnerability, via denial of service, if users can control the input to the layer. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-20",
              "description": "CWE-20 Improper Input Validation",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-12-10T22:10:23",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m648-33qf-v3gp"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/14755416e364f17fb1870882fa778c7fec7f16e3"
        }
      ],
      "source": {
        "advisory": "GHSA-m648-33qf-v3gp",
        "discovery": "UNKNOWN"
      },
      "title": "CHECK-fail in LSTM with zero-length input in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-26270",
          "STATE": "PUBLIC",
          "TITLE": "CHECK-fail in LSTM with zero-length input in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.5"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.4"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.3"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.2"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In affected versions of TensorFlow running an LSTM/GRU model where the LSTM/GRU layer receives an input with zero-length results in a CHECK failure when using the CUDA backend. This can result in a query-of-death vulnerability, via denial of service, if users can control the input to the layer. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-20 Improper Input Validation"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m648-33qf-v3gp",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m648-33qf-v3gp"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/14755416e364f17fb1870882fa778c7fec7f16e3",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/14755416e364f17fb1870882fa778c7fec7f16e3"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-m648-33qf-v3gp",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-26270",
    "datePublished": "2020-12-10T22:10:23",
    "dateReserved": "2020-10-01T00:00:00",
    "dateUpdated": "2024-08-04T15:56:03.807Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "meta": {
    "nvd": "{\"cve\":{\"id\":\"CVE-2020-26270\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2020-12-10T23:15:12.973\",\"lastModified\":\"2024-11-21T05:19:42.983\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"In affected versions of TensorFlow running an LSTM/GRU model where the LSTM/GRU layer receives an input with zero-length results in a CHECK failure when using the CUDA backend. This can result in a query-of-death vulnerability, via denial of service, if users can control the input to the layer. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.\"},{\"lang\":\"es\",\"value\":\"En las versiones afectadas de TensorFlow que ejecutan un modelo LSTM/GRU donde la capa LSTM/GRU recibe una entrada con longitud cero, se produce un fallo de COMPROBACI\u00d3N cuando se usa el backend CUDA.\u0026#xa0;Esto puede resultar en una vulnerabilidad query-of-death, por medio de la denegaci\u00f3n de servicio, si los usuarios pueden controlar la entrada a la capa.\u0026#xa0;Esto es corregido en las versiones 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2 y 2.4.0.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L\",\"baseScore\":4.4,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"LOW\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.8,\"impactScore\":2.5},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:L\",\"baseScore\":3.3,\"baseSeverity\":\"LOW\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.8,\"impactScore\":1.4}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:N/I:N/A:P\",\"baseScore\":2.1,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"LOW\",\"exploitabilityScore\":3.9,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-20\"}]},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-20\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"1.15.5\",\"matchCriteriaId\":\"CA3A54AC-E0F8-4741-8A80-04EEF746B14B\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.0.0\",\"versionEndExcluding\":\"2.0.4\",\"matchCriteriaId\":\"989E4548-7823-436F-A9FE-04158ED41C48\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.1.0\",\"versionEndExcluding\":\"2.1.3\",\"matchCriteriaId\":\"46417CA8-E666-4E12-B2A8-BB0E97D49BF4\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.2.0\",\"versionEndExcluding\":\"2.2.2\",\"matchCriteriaId\":\"57B24744-0D81-41E9-9ED0-7296368DEF00\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.2\",\"matchCriteriaId\":\"DBEA56AF-3495-4883-9721-0FA9F08E7F6D\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/14755416e364f17fb1870882fa778c7fec7f16e3\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m648-33qf-v3gp\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/14755416e364f17fb1870882fa778c7fec7f16e3\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-m648-33qf-v3gp\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.