GHSA-828x-qc2p-wprq
Vulnerability from github
Published
2021-05-21 14:26
Modified
2024-10-31 20:56
Summary
Undefined behavior in `MaxPool3DGradGrad`
Details

Impact

The implementation of tf.raw_ops.MaxPool3DGradGrad exhibits undefined behavior by dereferencing null pointers backing attacker-supplied empty tensors:

```python import tensorflow as tf

orig_input = tf.constant([0.0], shape=[1, 1, 1, 1, 1], dtype=tf.float32) orig_output = tf.constant([0.0], shape=[1, 1, 1, 1, 1], dtype=tf.float32) grad = tf.constant([], shape=[0, 0, 0, 0, 0], dtype=tf.float32) ksize = [1, 1, 1, 1, 1] strides = [1, 1, 1, 1, 1] padding = "SAME"

tf.raw_ops.MaxPool3DGradGrad( orig_input=orig_input, orig_output=orig_output, grad=grad, ksize=ksize, strides=strides, padding=padding) ```

The implementation fails to validate that the 3 tensor inputs are not empty. If any of them is empty, then accessing the elements in the tensor results in dereferencing a null pointer.

Patches

We have patched the issue in GitHub commit a3d9f9be9ac2296615644061b40cefcee341dcc4.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2021-29574"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-476"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-05-18T18:34:21Z",
    "nvd_published_at": "2021-05-14T20:15:00Z",
    "severity": "LOW"
  },
  "details": "### Impact\nThe implementation of `tf.raw_ops.MaxPool3DGradGrad` exhibits undefined behavior by dereferencing null pointers backing attacker-supplied empty tensors:\n\n```python\nimport tensorflow as tf\n\norig_input = tf.constant([0.0], shape=[1, 1, 1, 1, 1], dtype=tf.float32)\norig_output = tf.constant([0.0], shape=[1, 1, 1, 1, 1], dtype=tf.float32)\ngrad = tf.constant([], shape=[0, 0, 0, 0, 0], dtype=tf.float32)\nksize = [1, 1, 1, 1, 1]\nstrides = [1, 1, 1, 1, 1]\npadding = \"SAME\"\n\ntf.raw_ops.MaxPool3DGradGrad(\n    orig_input=orig_input, orig_output=orig_output, grad=grad, ksize=ksize,\n    strides=strides, padding=padding)\n```\n\nThe [implementation](https://github.com/tensorflow/tensorflow/blob/72fe792967e7fd25234342068806707bbc116618/tensorflow/core/kernels/pooling_ops_3d.cc#L679-L703) fails to validate that the 3 tensor inputs are not empty. If any of them is empty, then accessing the elements in the tensor results in dereferencing a null pointer.\n\n### Patches\nWe have patched the issue in GitHub commit [a3d9f9be9ac2296615644061b40cefcee341dcc4](https://github.com/tensorflow/tensorflow/commit/a3d9f9be9ac2296615644061b40cefcee341dcc4).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.",
  "id": "GHSA-828x-qc2p-wprq",
  "modified": "2024-10-31T20:56:37Z",
  "published": "2021-05-21T14:26:10Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-828x-qc2p-wprq"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29574"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/a3d9f9be9ac2296615644061b40cefcee341dcc4"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-502.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-700.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-211.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Undefined behavior in `MaxPool3DGradGrad`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.