GHSA-7cqx-92hp-x6wh
Vulnerability from github
Impact
The implementation of tf.raw_ops.MaxPool3DGradGrad
is vulnerable to a heap buffer overflow:
```python import tensorflow as tf
values = [0.01] * 11 orig_input = tf.constant(values, shape=[11, 1, 1, 1, 1], dtype=tf.float32) orig_output = tf.constant([0.01], shape=[1, 1, 1, 1, 1], dtype=tf.float32) grad = tf.constant([0.01], shape=[1, 1, 1, 1, 1], dtype=tf.float32) ksize = [1, 1, 1, 1, 1] strides = [1, 1, 1, 1, 1] padding = "SAME"
tf.raw_ops.MaxPool3DGradGrad( orig_input=orig_input, orig_output=orig_output, grad=grad, ksize=ksize, strides=strides, padding=padding) ```
The implementation does not check that the initialization of Pool3dParameters
completes successfully:
cc
Pool3dParameters params{context, ksize_, stride_,
padding_, data_format_, tensor_in.shape()};
Since the constructor uses OP_REQUIRES
to validate conditions, the first assertion that fails interrupts the initialization of params
, making it contain invalid data. In turn, this might cause a heap buffer overflow, depending on default initialized values.
Patches
We have patched the issue in GitHub commit 63c6a29d0f2d692b247f7bf81f8732d6442fad09.
The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
For more information
Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.
Attribution
This vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.
{ "affected": [ { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.1.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow" }, "ranges": [ { "events": [ { "introduced": "2.4.0" }, { "fixed": "2.4.2" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.1.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-cpu" }, "ranges": [ { "events": [ { "introduced": "2.4.0" }, { "fixed": "2.4.2" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "0" }, { "fixed": "2.1.4" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.2.0" }, { "fixed": "2.2.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.3.0" }, { "fixed": "2.3.3" } ], "type": "ECOSYSTEM" } ] }, { "package": { "ecosystem": "PyPI", "name": "tensorflow-gpu" }, "ranges": [ { "events": [ { "introduced": "2.4.0" }, { "fixed": "2.4.2" } ], "type": "ECOSYSTEM" } ] } ], "aliases": [ "CVE-2021-29576" ], "database_specific": { "cwe_ids": [ "CWE-119", "CWE-787" ], "github_reviewed": true, "github_reviewed_at": "2021-05-18T18:23:59Z", "nvd_published_at": "2021-05-14T20:15:00Z", "severity": "LOW" }, "details": "### Impact\nThe implementation of `tf.raw_ops.MaxPool3DGradGrad` is vulnerable to a heap buffer overflow: \n\n```python\nimport tensorflow as tf\n\nvalues = [0.01] * 11\norig_input = tf.constant(values, shape=[11, 1, 1, 1, 1], dtype=tf.float32)\norig_output = tf.constant([0.01], shape=[1, 1, 1, 1, 1], dtype=tf.float32)\ngrad = tf.constant([0.01], shape=[1, 1, 1, 1, 1], dtype=tf.float32)\nksize = [1, 1, 1, 1, 1]\nstrides = [1, 1, 1, 1, 1]\npadding = \"SAME\"\n\ntf.raw_ops.MaxPool3DGradGrad(\n orig_input=orig_input, orig_output=orig_output, grad=grad, ksize=ksize,\n strides=strides, padding=padding)\n```\n\nThe [implementation](https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L694-L696) does not check that the initialization of `Pool3dParameters` completes successfully:\n\n```cc\nPool3dParameters params{context, ksize_, stride_,\n padding_, data_format_, tensor_in.shape()};\n```\n\nSince [the constructor](https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L48-L88) uses `OP_REQUIRES` to validate conditions, the first assertion that fails interrupts the initialization of `params`, making it contain invalid data. In turn, this might cause a heap buffer overflow, depending on default initialized values.\n\n### Patches\nWe have patched the issue in GitHub commit [63c6a29d0f2d692b247f7bf81f8732d6442fad09](https://github.com/tensorflow/tensorflow/commit/63c6a29d0f2d692b247f7bf81f8732d6442fad09).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.", "id": "GHSA-7cqx-92hp-x6wh", "modified": "2024-11-01T17:11:03Z", "published": "2021-05-21T14:26:16Z", "references": [ { "type": "WEB", "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7cqx-92hp-x6wh" }, { "type": "ADVISORY", "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29576" }, { "type": "WEB", "url": "https://github.com/tensorflow/tensorflow/commit/63c6a29d0f2d692b247f7bf81f8732d6442fad09" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-504.yaml" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-702.yaml" }, { "type": "WEB", "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-213.yaml" }, { "type": "PACKAGE", "url": "https://github.com/tensorflow/tensorflow" } ], "schema_version": "1.4.0", "severity": [ { "score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", "type": "CVSS_V3" }, { "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N", "type": "CVSS_V4" } ], "summary": "Heap buffer overflow in `MaxPool3DGradGrad`" }
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.