GHSA-7cqx-92hp-x6wh
Vulnerability from github
Published
2021-05-21 14:26
Modified
2024-11-01 17:11
Summary
Heap buffer overflow in `MaxPool3DGradGrad`
Details

Impact

The implementation of tf.raw_ops.MaxPool3DGradGrad is vulnerable to a heap buffer overflow:

```python import tensorflow as tf

values = [0.01] * 11 orig_input = tf.constant(values, shape=[11, 1, 1, 1, 1], dtype=tf.float32) orig_output = tf.constant([0.01], shape=[1, 1, 1, 1, 1], dtype=tf.float32) grad = tf.constant([0.01], shape=[1, 1, 1, 1, 1], dtype=tf.float32) ksize = [1, 1, 1, 1, 1] strides = [1, 1, 1, 1, 1] padding = "SAME"

tf.raw_ops.MaxPool3DGradGrad( orig_input=orig_input, orig_output=orig_output, grad=grad, ksize=ksize, strides=strides, padding=padding) ```

The implementation does not check that the initialization of Pool3dParameters completes successfully:

cc Pool3dParameters params{context, ksize_, stride_, padding_, data_format_, tensor_in.shape()};

Since the constructor uses OP_REQUIRES to validate conditions, the first assertion that fails interrupts the initialization of params, making it contain invalid data. In turn, this might cause a heap buffer overflow, depending on default initialized values.

Patches

We have patched the issue in GitHub commit 63c6a29d0f2d692b247f7bf81f8732d6442fad09.

The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Attribution

This vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.1.4"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.2.0"
            },
            {
              "fixed": "2.2.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.3.0"
            },
            {
              "fixed": "2.3.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.4.0"
            },
            {
              "fixed": "2.4.2"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    }
  ],
  "aliases": [
    "CVE-2021-29576"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-119",
      "CWE-787"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2021-05-18T18:23:59Z",
    "nvd_published_at": "2021-05-14T20:15:00Z",
    "severity": "LOW"
  },
  "details": "### Impact\nThe implementation of `tf.raw_ops.MaxPool3DGradGrad` is vulnerable to a heap buffer overflow: \n\n```python\nimport tensorflow as tf\n\nvalues = [0.01] * 11\norig_input = tf.constant(values, shape=[11, 1, 1, 1, 1], dtype=tf.float32)\norig_output = tf.constant([0.01], shape=[1, 1, 1, 1, 1], dtype=tf.float32)\ngrad = tf.constant([0.01], shape=[1, 1, 1, 1, 1], dtype=tf.float32)\nksize = [1, 1, 1, 1, 1]\nstrides = [1, 1, 1, 1, 1]\npadding = \"SAME\"\n\ntf.raw_ops.MaxPool3DGradGrad(\n    orig_input=orig_input, orig_output=orig_output, grad=grad, ksize=ksize,\n    strides=strides, padding=padding)\n```\n\nThe [implementation](https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L694-L696) does not check that the initialization of `Pool3dParameters` completes successfully:\n\n```cc\nPool3dParameters params{context,  ksize_,       stride_,\n                        padding_, data_format_, tensor_in.shape()};\n```\n\nSince [the constructor](https://github.com/tensorflow/tensorflow/blob/596c05a159b6fbb9e39ca10b3f7753b7244fa1e9/tensorflow/core/kernels/pooling_ops_3d.cc#L48-L88) uses `OP_REQUIRES` to validate conditions, the first assertion that fails interrupts the initialization of `params`, making it contain invalid data. In turn, this might cause a heap buffer overflow, depending on default initialized values.\n\n### Patches\nWe have patched the issue in GitHub commit [63c6a29d0f2d692b247f7bf81f8732d6442fad09](https://github.com/tensorflow/tensorflow/commit/63c6a29d0f2d692b247f7bf81f8732d6442fad09).\n\nThe fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.\n\n### Attribution\nThis vulnerability has been reported by Ying Wang and Yakun Zhang of Baidu X-Team.",
  "id": "GHSA-7cqx-92hp-x6wh",
  "modified": "2024-11-01T17:11:03Z",
  "published": "2021-05-21T14:26:16Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-7cqx-92hp-x6wh"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2021-29576"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/63c6a29d0f2d692b247f7bf81f8732d6442fad09"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2021-504.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2021-702.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow/PYSEC-2021-213.yaml"
    },
    {
      "type": "PACKAGE",
      "url": "https://github.com/tensorflow/tensorflow"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:N/VC:N/VI:N/VA:L/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Heap buffer overflow in `MaxPool3DGradGrad`"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.