GHSA-77gp-3h4r-6428
Vulnerability from github
Published
2022-02-09 23:25
Modified
2024-11-13 22:47
Summary
Out of bounds read and write in Tensorflow
Details

Impact

There is a typo in TensorFlow's SpecializeType which results in heap OOB read/write:

cc for (int i = 0; i < op_def.output_arg_size(); i++) { // ... for (int j = 0; j < t->args_size(); j++) { auto* arg = t->mutable_args(i); // ... } }

Due to a typo, arg is initialized to the ith mutable argument in a loop where the loop index is j. Hence it is possible to assign to arg from outside the vector of arguments. Since this is a mutable proto value, it allows both read and write to outside of bounds data.

Patches

We have patched the issue in GitHub commit 0657c83d08845cc434175934c642299de2c0f042.

The fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range.

For more information

Please consult our security guide for more information regarding the security model and how to contact us with issues and questions.

Show details on source website


{
  "affected": [
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.5.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.6.0"
            },
            {
              "fixed": "2.6.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.7.0"
            },
            {
              "fixed": "2.7.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.7.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.5.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.6.0"
            },
            {
              "fixed": "2.6.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-cpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.7.0"
            },
            {
              "fixed": "2.7.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.7.0"
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "0"
            },
            {
              "fixed": "2.5.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.6.0"
            },
            {
              "fixed": "2.6.3"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ]
    },
    {
      "package": {
        "ecosystem": "PyPI",
        "name": "tensorflow-gpu"
      },
      "ranges": [
        {
          "events": [
            {
              "introduced": "2.7.0"
            },
            {
              "fixed": "2.7.1"
            }
          ],
          "type": "ECOSYSTEM"
        }
      ],
      "versions": [
        "2.7.0"
      ]
    }
  ],
  "aliases": [
    "CVE-2022-23574"
  ],
  "database_specific": {
    "cwe_ids": [
      "CWE-125",
      "CWE-787"
    ],
    "github_reviewed": true,
    "github_reviewed_at": "2022-02-04T19:12:26Z",
    "nvd_published_at": "2022-02-04T23:15:00Z",
    "severity": "HIGH"
  },
  "details": "### Impact\nThere is a typo in TensorFlow\u0027s [`SpecializeType`](https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/full_type_util.cc#L81-L102) which results in heap OOB read/write:\n\n```cc\nfor (int i = 0; i \u003c op_def.output_arg_size(); i++) {\n  // ...\n  for (int j = 0; j \u003c t-\u003eargs_size(); j++) {\n    auto* arg = t-\u003emutable_args(i);\n    // ...\n  }\n} \n```\n\nDue to a typo, `arg` is initialized to the `i`th mutable argument in a loop where the loop index is `j`. Hence it is possible to assign to `arg` from outside the vector of arguments. Since this is a mutable proto value, it allows both read and write to outside of bounds data.\n\n### Patches\nWe have patched the issue in GitHub commit [0657c83d08845cc434175934c642299de2c0f042](https://github.com/tensorflow/tensorflow/commit/0657c83d08845cc434175934c642299de2c0f042).\n\nThe fix will be included in TensorFlow 2.8.0. We will also cherrypick this commit on TensorFlow 2.7.1, and TensorFlow 2.6.3, as these are also affected and still in supported range.\n\n### For more information\nPlease consult [our security guide](https://github.com/tensorflow/tensorflow/blob/master/SECURITY.md) for more information regarding the security model and how to contact us with issues and questions.",
  "id": "GHSA-77gp-3h4r-6428",
  "modified": "2024-11-13T22:47:49Z",
  "published": "2022-02-09T23:25:40Z",
  "references": [
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-77gp-3h4r-6428"
    },
    {
      "type": "ADVISORY",
      "url": "https://nvd.nist.gov/vuln/detail/CVE-2022-23574"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/commit/0657c83d08845cc434175934c642299de2c0f042"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-cpu/PYSEC-2022-83.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/pypa/advisory-database/tree/main/vulns/tensorflow-gpu/PYSEC-2022-138.yaml"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow"
    },
    {
      "type": "WEB",
      "url": "https://github.com/tensorflow/tensorflow/blob/a1320ec1eac186da1d03f033109191f715b2b130/tensorflow/core/framework/full_type_util.cc#L81-L102"
    }
  ],
  "schema_version": "1.4.0",
  "severity": [
    {
      "score": "CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:H/I:H/A:H",
      "type": "CVSS_V3"
    },
    {
      "score": "CVSS:4.0/AV:N/AC:L/AT:N/PR:L/UI:N/VC:H/VI:H/VA:H/SC:N/SI:N/SA:N",
      "type": "CVSS_V4"
    }
  ],
  "summary": "Out of bounds read and write in Tensorflow"
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.