CVE-2024-3099
Vulnerability from cvelistv5
Published
2024-06-06 18:08
Modified
2024-08-01 19:32
Summary
A vulnerability in mlflow/mlflow version 2.11.1 allows attackers to create multiple models with the same name by exploiting URL encoding. This flaw can lead to Denial of Service (DoS) as an authenticated user might not be able to use the intended model, as it will open a different model each time. Additionally, an attacker can exploit this vulnerability to perform data model poisoning by creating a model with the same name, potentially causing an authenticated user to become a victim by using the poisoned model. The issue stems from inadequate validation of model names, allowing for the creation of models with URL-encoded names that are treated as distinct from their URL-decoded counterparts.
Impacted products
Vendor Product Version
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "affected": [
          {
            "cpes": [
              "cpe:2.3:a:lfprojects:mlflow:2.11.1:*:*:*:*:*:*:*"
            ],
            "defaultStatus": "unknown",
            "product": "mlflow",
            "vendor": "lfprojects",
            "versions": [
              {
                "status": "affected",
                "version": "2.11.1"
              }
            ]
          }
        ],
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2024-3099",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "partial"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2024-06-07T12:51:54.841930Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2024-07-24T17:22:16.990Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      },
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-01T19:32:42.675Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_transferred"
            ],
            "url": "https://huntr.com/bounties/8d96374a-ce8d-480e-9cb0-0a7e5165c24a"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "mlflow/mlflow",
          "vendor": "mlflow",
          "versions": [
            {
              "lessThanOrEqual": "latest",
              "status": "affected",
              "version": "unspecified",
              "versionType": "custom"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "A vulnerability in mlflow/mlflow version 2.11.1 allows attackers to create multiple models with the same name by exploiting URL encoding. This flaw can lead to Denial of Service (DoS) as an authenticated user might not be able to use the intended model, as it will open a different model each time. Additionally, an attacker can exploit this vulnerability to perform data model poisoning by creating a model with the same name, potentially causing an authenticated user to become a victim by using the poisoned model. The issue stems from inadequate validation of model names, allowing for the creation of models with URL-encoded names that are treated as distinct from their URL-decoded counterparts."
        }
      ],
      "metrics": [
        {
          "cvssV3_0": {
            "attackComplexity": "LOW",
            "attackVector": "NETWORK",
            "availabilityImpact": "LOW",
            "baseScore": 5.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.0"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-475",
              "description": "CWE-475 Undefined Behavior for Input to API",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2024-06-06T18:08:16.402Z",
        "orgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
        "shortName": "@huntr_ai"
      },
      "references": [
        {
          "url": "https://huntr.com/bounties/8d96374a-ce8d-480e-9cb0-0a7e5165c24a"
        }
      ],
      "source": {
        "advisory": "8d96374a-ce8d-480e-9cb0-0a7e5165c24a",
        "discovery": "EXTERNAL"
      },
      "title": "Denial of Service and Data Model Poisoning via URL Encoding in mlflow/mlflow"
    }
  },
  "cveMetadata": {
    "assignerOrgId": "c09c270a-b464-47c1-9133-acb35b22c19a",
    "assignerShortName": "@huntr_ai",
    "cveId": "CVE-2024-3099",
    "datePublished": "2024-06-06T18:08:16.402Z",
    "dateReserved": "2024-03-29T17:47:14.222Z",
    "dateUpdated": "2024-08-01T19:32:42.675Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "nvd": "{\"cve\":{\"id\":\"CVE-2024-3099\",\"sourceIdentifier\":\"security@huntr.dev\",\"published\":\"2024-06-06T19:15:59.393\",\"lastModified\":\"2024-11-21T09:28:53.953\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"A vulnerability in mlflow/mlflow version 2.11.1 allows attackers to create multiple models with the same name by exploiting URL encoding. This flaw can lead to Denial of Service (DoS) as an authenticated user might not be able to use the intended model, as it will open a different model each time. Additionally, an attacker can exploit this vulnerability to perform data model poisoning by creating a model with the same name, potentially causing an authenticated user to become a victim by using the poisoned model. The issue stems from inadequate validation of model names, allowing for the creation of models with URL-encoded names that are treated as distinct from their URL-decoded counterparts.\"},{\"lang\":\"es\",\"value\":\"Una vulnerabilidad en mlflow/mlflow versi\u00f3n 2.11.1 permite a los atacantes crear m\u00faltiples modelos con el mismo nombre explotando la codificaci\u00f3n URL. Esta falla puede provocar una denegaci\u00f3n de servicio (DoS), ya que es posible que un usuario autenticado no pueda utilizar el modelo deseado, ya que abrir\u00e1 un modelo diferente cada vez. Adem\u00e1s, un atacante puede aprovechar esta vulnerabilidad para envenenar el modelo de datos creando un modelo con el mismo nombre, lo que podr\u00eda provocar que un usuario autenticado se convierta en v\u00edctima al utilizar el modelo envenenado. El problema surge de una validaci\u00f3n inadecuada de los nombres de los modelos, lo que permite la creaci\u00f3n de modelos con nombres codificados en URL que se tratan como distintos de sus hom\u00f3logos decodificados en URL.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L\",\"baseScore\":5.4,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"LOW\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":2.8,\"impactScore\":2.5}],\"cvssMetricV30\":[{\"source\":\"security@huntr.dev\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.0\",\"vectorString\":\"CVSS:3.0/AV:N/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L\",\"baseScore\":5.4,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"LOW\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":2.8,\"impactScore\":2.5}]},\"weaknesses\":[{\"source\":\"security@huntr.dev\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-475\"}]},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"NVD-CWE-Other\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:lfprojects:mlflow:-:*:*:*:*:*:*:*\",\"matchCriteriaId\":\"F18F1880-033C-4E18-913C-6C5356427ABB\"}]}]}],\"references\":[{\"url\":\"https://huntr.com/bounties/8d96374a-ce8d-480e-9cb0-0a7e5165c24a\",\"source\":\"security@huntr.dev\",\"tags\":[\"Exploit\",\"Issue Tracking\",\"Third Party Advisory\"]},{\"url\":\"https://huntr.com/bounties/8d96374a-ce8d-480e-9cb0-0a7e5165c24a\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Issue Tracking\",\"Third Party Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.