CVE-2021-29517
Vulnerability from cvelistv5
Published
2021-05-14 19:36
Modified
2024-08-03 22:11
Severity ?
EPSS score ?
Summary
TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
References
▼ | URL | Tags | |
---|---|---|---|
security-advisories@github.com | https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f | Patch, Third Party Advisory | |
security-advisories@github.com | https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv | Exploit, Patch, Third Party Advisory | |
af854a3a-2127-422b-91ae-364da2661108 | https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f | Patch, Third Party Advisory | |
af854a3a-2127-422b-91ae-364da2661108 | https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv | Exploit, Patch, Third Party Advisory |
Impacted products
Vendor | Product | Version | |
---|---|---|---|
▼ | tensorflow | tensorflow |
Version: < 2.1.4 Version: >= 2.2.0, < 2.2.3 Version: >= 2.3.0, < 2.3.3 Version: >= 2.4.0, < 2.4.2 |
|
{ "containers": { "adp": [ { "providerMetadata": { "dateUpdated": "2024-08-03T22:11:05.568Z", "orgId": "af854a3a-2127-422b-91ae-364da2661108", "shortName": "CVE" }, "references": [ { "tags": [ "x_refsource_CONFIRM", "x_transferred" ], "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv" }, { "tags": [ "x_refsource_MISC", "x_transferred" ], "url": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f" } ], "title": "CVE Program Container" } ], "cna": { "affected": [ { "product": "tensorflow", "vendor": "tensorflow", "versions": [ { "status": "affected", "version": "\u003c 2.1.4" }, { "status": "affected", "version": "\u003e= 2.2.0, \u003c 2.2.3" }, { "status": "affected", "version": "\u003e= 2.3.0, \u003c 2.3.3" }, { "status": "affected", "version": "\u003e= 2.4.0, \u003c 2.4.2" } ] } ], "descriptions": [ { "lang": "en", "value": "TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range." } ], "metrics": [ { "cvssV3_1": { "attackComplexity": "HIGH", "attackVector": "LOCAL", "availabilityImpact": "LOW", "baseScore": 2.5, "baseSeverity": "LOW", "confidentialityImpact": "NONE", "integrityImpact": "NONE", "privilegesRequired": "LOW", "scope": "UNCHANGED", "userInteraction": "NONE", "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", "version": "3.1" } } ], "problemTypes": [ { "descriptions": [ { "cweId": "CWE-369", "description": "CWE-369: Divide By Zero", "lang": "en", "type": "CWE" } ] } ], "providerMetadata": { "dateUpdated": "2021-05-14T19:36:11", "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa", "shortName": "GitHub_M" }, "references": [ { "tags": [ "x_refsource_CONFIRM" ], "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv" }, { "tags": [ "x_refsource_MISC" ], "url": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f" } ], "source": { "advisory": "GHSA-772p-x54p-hjrv", "discovery": "UNKNOWN" }, "title": "Division by zero in `Conv3D`", "x_legacyV4Record": { "CVE_data_meta": { "ASSIGNER": "security-advisories@github.com", "ID": "CVE-2021-29517", "STATE": "PUBLIC", "TITLE": "Division by zero in `Conv3D`" }, "affects": { "vendor": { "vendor_data": [ { "product": { "product_data": [ { "product_name": "tensorflow", "version": { "version_data": [ { "version_value": "\u003c 2.1.4" }, { "version_value": "\u003e= 2.2.0, \u003c 2.2.3" }, { "version_value": "\u003e= 2.3.0, \u003c 2.3.3" }, { "version_value": "\u003e= 2.4.0, \u003c 2.4.2" } ] } } ] }, "vendor_name": "tensorflow" } ] } }, "data_format": "MITRE", "data_type": "CVE", "data_version": "4.0", "description": { "description_data": [ { "lang": "eng", "value": "TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range." } ] }, "impact": { "cvss": { "attackComplexity": "HIGH", "attackVector": "LOCAL", "availabilityImpact": "LOW", "baseScore": 2.5, "baseSeverity": "LOW", "confidentialityImpact": "NONE", "integrityImpact": "NONE", "privilegesRequired": "LOW", "scope": "UNCHANGED", "userInteraction": "NONE", "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", "version": "3.1" } }, "problemtype": { "problemtype_data": [ { "description": [ { "lang": "eng", "value": "CWE-369: Divide By Zero" } ] } ] }, "references": { "reference_data": [ { "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv", "refsource": "CONFIRM", "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv" }, { "name": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f", "refsource": "MISC", "url": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f" } ] }, "source": { "advisory": "GHSA-772p-x54p-hjrv", "discovery": "UNKNOWN" } } } }, "cveMetadata": { "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa", "assignerShortName": "GitHub_M", "cveId": "CVE-2021-29517", "datePublished": "2021-05-14T19:36:11", "dateReserved": "2021-03-30T00:00:00", "dateUpdated": "2024-08-03T22:11:05.568Z", "state": "PUBLISHED" }, "dataType": "CVE_RECORD", "dataVersion": "5.1", "meta": { "nvd": "{\"cve\":{\"id\":\"CVE-2021-29517\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-05-14T20:15:11.390\",\"lastModified\":\"2024-11-21T06:01:17.610\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un usuario malicioso podr\u00eda desencadenar una divisi\u00f3n por 0 en una implementaci\u00f3n de \\\"Conv3D\\\".\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) realiza una operaci\u00f3n de m\u00f3dulo basada en una entrada controlada por el usuario.\u0026#xa0;Por lo tanto, cuando \\\"filter\\\" presenta un 0 como quinto elemento, esto resulta en una divisi\u00f3n entre 0. Adem\u00e1s, si la forma de los dos tensores no es v\u00e1lida, puede ser desencadenada una aserci\u00f3n Eigen, resultando en un bloqueo del programa.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L\",\"baseScore\":2.5,\"baseSeverity\":\"LOW\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.0,\"impactScore\":1.4},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:N/I:N/A:P\",\"baseScore\":2.1,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"LOW\",\"exploitabilityScore\":3.9,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-369\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"2.1.4\",\"matchCriteriaId\":\"323ABCCE-24EB-47CC-87F6-48C101477587\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.2.0\",\"versionEndExcluding\":\"2.2.3\",\"matchCriteriaId\":\"64ABA90C-0649-4BB0-89C9-83C14BBDCC0F\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.3\",\"matchCriteriaId\":\"0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.4.0\",\"versionEndExcluding\":\"2.4.2\",\"matchCriteriaId\":\"8259531B-A8AC-4F8B-B60F-B69DE4767C03\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}" } }
Loading…
Loading…
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.