CVE-2021-29517 (GCVE-0-2021-29517)

Vulnerability from cvelistv5 – Published: 2021-05-14 19:36 – Updated: 2024-08-03 22:11
VLAI?
Title
Division by zero in `Conv3D`
Summary
TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
CWE
Assigner
Impacted products
Vendor Product Version
tensorflow tensorflow Affected: < 2.1.4
Affected: >= 2.2.0, < 2.2.3
Affected: >= 2.3.0, < 2.3.3
Affected: >= 2.4.0, < 2.4.2
Create a notification for this product.
Show details on NVD website

{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-03T22:11:05.568Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.1.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.4.0, \u003c 2.4.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-369",
              "description": "CWE-369: Divide By Zero",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2021-05-14T19:36:11",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f"
        }
      ],
      "source": {
        "advisory": "GHSA-772p-x54p-hjrv",
        "discovery": "UNKNOWN"
      },
      "title": "Division by zero in `Conv3D`",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2021-29517",
          "STATE": "PUBLIC",
          "TITLE": "Division by zero in `Conv3D`"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.1.4"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.3"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.3"
                          },
                          {
                            "version_value": "\u003e= 2.4.0, \u003c 2.4.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 2.5,
            "baseSeverity": "LOW",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-369: Divide By Zero"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-772p-x54p-hjrv",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2021-29517",
    "datePublished": "2021-05-14T19:36:11",
    "dateReserved": "2021-03-30T00:00:00",
    "dateUpdated": "2024-08-03T22:11:05.568Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "vulnerability-lookup:meta": {
    "fkie_nvd": {
      "configurations": "[{\"nodes\": [{\"operator\": \"OR\", \"negate\": false, \"cpeMatch\": [{\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionEndExcluding\": \"2.1.4\", \"matchCriteriaId\": \"323ABCCE-24EB-47CC-87F6-48C101477587\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.2.0\", \"versionEndExcluding\": \"2.2.3\", \"matchCriteriaId\": \"64ABA90C-0649-4BB0-89C9-83C14BBDCC0F\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.3.0\", \"versionEndExcluding\": \"2.3.3\", \"matchCriteriaId\": \"0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9\"}, {\"vulnerable\": true, \"criteria\": \"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\", \"versionStartIncluding\": \"2.4.0\", \"versionEndExcluding\": \"2.4.2\", \"matchCriteriaId\": \"8259531B-A8AC-4F8B-B60F-B69DE4767C03\"}]}]}]",
      "descriptions": "[{\"lang\": \"en\", \"value\": \"TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\"}, {\"lang\": \"es\", \"value\": \"TensorFlow es una plataforma de c\\u00f3digo abierto de extremo a extremo para el aprendizaje autom\\u00e1tico.\u0026#xa0;Un usuario malicioso podr\\u00eda desencadenar una divisi\\u00f3n por 0 en una implementaci\\u00f3n de \\\"Conv3D\\\".\u0026#xa0;La implementaci\\u00f3n (https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) realiza una operaci\\u00f3n de m\\u00f3dulo basada en una entrada controlada por el usuario.\u0026#xa0;Por lo tanto, cuando \\\"filter\\\" presenta un 0 como quinto elemento, esto resulta en una divisi\\u00f3n entre 0. Adem\\u00e1s, si la forma de los dos tensores no es v\\u00e1lida, puede ser desencadenada una aserci\\u00f3n Eigen, resultando en un bloqueo del programa.\u0026#xa0;La correcci\\u00f3n ser\\u00e1 inclu\\u00edda en TensorFlow versi\\u00f3n 2.5.0.\u0026#xa0;Tambi\\u00e9n seleccionaremos este commit en TensorFlow versi\\u00f3n 2.4.2, TensorFlow versi\\u00f3n 2.3.3, TensorFlow versi\\u00f3n 2.2.3 y TensorFlow versi\\u00f3n 2.1.4, ya que estos tambi\\u00e9n est\\u00e1n afectados y a\\u00fan est\\u00e1n en el rango admitido\"}]",
      "id": "CVE-2021-29517",
      "lastModified": "2024-11-21T06:01:17.610",
      "metrics": "{\"cvssMetricV31\": [{\"source\": \"security-advisories@github.com\", \"type\": \"Secondary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L\", \"baseScore\": 2.5, \"baseSeverity\": \"LOW\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"HIGH\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"LOW\"}, \"exploitabilityScore\": 1.0, \"impactScore\": 1.4}, {\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"3.1\", \"vectorString\": \"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\", \"baseScore\": 5.5, \"baseSeverity\": \"MEDIUM\", \"attackVector\": \"LOCAL\", \"attackComplexity\": \"LOW\", \"privilegesRequired\": \"LOW\", \"userInteraction\": \"NONE\", \"scope\": \"UNCHANGED\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"HIGH\"}, \"exploitabilityScore\": 1.8, \"impactScore\": 3.6}], \"cvssMetricV2\": [{\"source\": \"nvd@nist.gov\", \"type\": \"Primary\", \"cvssData\": {\"version\": \"2.0\", \"vectorString\": \"AV:L/AC:L/Au:N/C:N/I:N/A:P\", \"baseScore\": 2.1, \"accessVector\": \"LOCAL\", \"accessComplexity\": \"LOW\", \"authentication\": \"NONE\", \"confidentialityImpact\": \"NONE\", \"integrityImpact\": \"NONE\", \"availabilityImpact\": \"PARTIAL\"}, \"baseSeverity\": \"LOW\", \"exploitabilityScore\": 3.9, \"impactScore\": 2.9, \"acInsufInfo\": false, \"obtainAllPrivilege\": false, \"obtainUserPrivilege\": false, \"obtainOtherPrivilege\": false, \"userInteractionRequired\": false}]}",
      "published": "2021-05-14T20:15:11.390",
      "references": "[{\"url\": \"https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv\", \"source\": \"security-advisories@github.com\", \"tags\": [\"Exploit\", \"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Patch\", \"Third Party Advisory\"]}, {\"url\": \"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv\", \"source\": \"af854a3a-2127-422b-91ae-364da2661108\", \"tags\": [\"Exploit\", \"Patch\", \"Third Party Advisory\"]}]",
      "sourceIdentifier": "security-advisories@github.com",
      "vulnStatus": "Modified",
      "weaknesses": "[{\"source\": \"security-advisories@github.com\", \"type\": \"Primary\", \"description\": [{\"lang\": \"en\", \"value\": \"CWE-369\"}]}]"
    },
    "nvd": "{\"cve\":{\"id\":\"CVE-2021-29517\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-05-14T20:15:11.390\",\"lastModified\":\"2024-11-21T06:01:17.610\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Un usuario malicioso podr\u00eda desencadenar una divisi\u00f3n por 0 en una implementaci\u00f3n de \\\"Conv3D\\\".\u0026#xa0;La implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) realiza una operaci\u00f3n de m\u00f3dulo basada en una entrada controlada por el usuario.\u0026#xa0;Por lo tanto, cuando \\\"filter\\\" presenta un 0 como quinto elemento, esto resulta en una divisi\u00f3n entre 0. Adem\u00e1s, si la forma de los dos tensores no es v\u00e1lida, puede ser desencadenada una aserci\u00f3n Eigen, resultando en un bloqueo del programa.\u0026#xa0;La correcci\u00f3n ser\u00e1 inclu\u00edda en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango admitido\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L\",\"baseScore\":2.5,\"baseSeverity\":\"LOW\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.0,\"impactScore\":1.4},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:N/I:N/A:P\",\"baseScore\":2.1,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"LOW\",\"exploitabilityScore\":3.9,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-369\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"2.1.4\",\"matchCriteriaId\":\"323ABCCE-24EB-47CC-87F6-48C101477587\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.2.0\",\"versionEndExcluding\":\"2.2.3\",\"matchCriteriaId\":\"64ABA90C-0649-4BB0-89C9-83C14BBDCC0F\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.3\",\"matchCriteriaId\":\"0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.4.0\",\"versionEndExcluding\":\"2.4.2\",\"matchCriteriaId\":\"8259531B-A8AC-4F8B-B60F-B69DE4767C03\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or observed by the user.
  • Confirmed: The vulnerability has been validated from an analyst's perspective.
  • Published Proof of Concept: A public proof of concept is available for this vulnerability.
  • Exploited: The vulnerability was observed as exploited by the user who reported the sighting.
  • Patched: The vulnerability was observed as successfully patched by the user who reported the sighting.
  • Not exploited: The vulnerability was not observed as exploited by the user who reported the sighting.
  • Not confirmed: The user expressed doubt about the validity of the vulnerability.
  • Not patched: The vulnerability was not observed as successfully patched by the user who reported the sighting.


Loading…

Detection rules are retrieved from Rulezet.

Loading…

Loading…