CVE-2020-26266
Vulnerability from cvelistv5
Published
2020-12-10 22:10
Modified
2024-08-04 15:56
Summary
In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.
Impacted products
Vendor Product Version
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T15:56:04.617Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 1.15.5"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.0.0, \u003c 2.0.4"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.1.0, \u003c 2.1.3"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.2.0, \u003c 2.2.2"
            },
            {
              "status": "affected",
              "version": "\u003e= 2.3.0, \u003c 2.3.2"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-908",
              "description": "CWE-908: Use of Uninitialized Resource",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-12-10T22:10:47",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2"
        }
      ],
      "source": {
        "advisory": "GHSA-qhxx-j73r-qpm2",
        "discovery": "UNKNOWN"
      },
      "title": "Uninitialized memory access in Eigen types in TensorFlow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-26266",
          "STATE": "PUBLIC",
          "TITLE": "Uninitialized memory access in Eigen types in TensorFlow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 1.15.5"
                          },
                          {
                            "version_value": "\u003e= 2.0.0, \u003c 2.0.4"
                          },
                          {
                            "version_value": "\u003e= 2.1.0, \u003c 2.1.3"
                          },
                          {
                            "version_value": "\u003e= 2.2.0, \u003c 2.2.2"
                          },
                          {
                            "version_value": "\u003e= 2.3.0, \u003c 2.3.2"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "LOW",
            "attackVector": "LOCAL",
            "availabilityImpact": "LOW",
            "baseScore": 4.4,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "LOW",
            "privilegesRequired": "LOW",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-908: Use of Uninitialized Resource"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-qhxx-j73r-qpm2",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-26266",
    "datePublished": "2020-12-10T22:10:47",
    "dateReserved": "2020-10-01T00:00:00",
    "dateUpdated": "2024-08-04T15:56:04.617Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "meta": {
    "nvd": "{\"cve\":{\"id\":\"CVE-2020-26266\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2020-12-10T23:15:12.647\",\"lastModified\":\"2024-11-21T05:19:42.273\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"In affected versions of TensorFlow under certain cases a saved model can trigger use of uninitialized values during code execution. This is caused by having tensor buffers be filled with the default value of the type but forgetting to default initialize the quantized floating point types in Eigen. This is fixed in versions 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2, and 2.4.0.\"},{\"lang\":\"es\",\"value\":\"En las versiones afectadas de TensorFlow, en determinados casos, un modelo guardado puede activar el uso de valores no inicializados durante la ejecuci\u00f3n del c\u00f3digo.\u0026#xa0;Esto es debido a que los b\u00faferes de tensor se llenan con el valor predeterminado del tipo, pero se olvidan de inicializar por defecto los tipos de punto flotante cuantificados en Eigen.\u0026#xa0;Esto es corregido en las versiones 1.15.5, 2.0.4, 2.1.3, 2.2.2, 2.3.2 y 2.4.0.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:L/A:L\",\"baseScore\":4.4,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"LOW\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.8,\"impactScore\":2.5},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:L/I:L/A:L\",\"baseScore\":5.3,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"LOW\",\"integrityImpact\":\"LOW\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.8,\"impactScore\":3.4}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:P/I:P/A:P\",\"baseScore\":4.6,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"PARTIAL\",\"integrityImpact\":\"PARTIAL\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"MEDIUM\",\"exploitabilityScore\":3.9,\"impactScore\":6.4,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-908\"}]},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-908\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"1.15.5\",\"matchCriteriaId\":\"CA3A54AC-E0F8-4741-8A80-04EEF746B14B\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.0.0\",\"versionEndExcluding\":\"2.0.4\",\"matchCriteriaId\":\"989E4548-7823-436F-A9FE-04158ED41C48\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.1.0\",\"versionEndExcluding\":\"2.1.3\",\"matchCriteriaId\":\"46417CA8-E666-4E12-B2A8-BB0E97D49BF4\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.2.0\",\"versionEndExcluding\":\"2.2.2\",\"matchCriteriaId\":\"57B24744-0D81-41E9-9ED0-7296368DEF00\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.2\",\"matchCriteriaId\":\"DBEA56AF-3495-4883-9721-0FA9F08E7F6D\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/ace0c15a22f7f054abcc1f53eabbcb0a1239a9e2\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qhxx-j73r-qpm2\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.