CVE-2020-15265
Vulnerability from cvelistv5
Published
2020-10-21 20:20
Modified
2024-08-04 13:15
Summary
In Tensorflow before version 2.4.0, an attacker can pass an invalid `axis` value to `tf.quantization.quantize_and_dequantize`. This results in accessing a dimension outside the rank of the input tensor in the C++ kernel implementation. However, dim_size only does a DCHECK to validate the argument and then uses it to access the corresponding element of an array. Since in normal builds, `DCHECK`-like macros are no-ops, this results in segfault and access out of bounds of the array. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved.
Impacted products
Vendor Product Version
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "providerMetadata": {
          "dateUpdated": "2024-08-04T13:15:19.748Z",
          "orgId": "af854a3a-2127-422b-91ae-364da2661108",
          "shortName": "CVE"
        },
        "references": [
          {
            "tags": [
              "x_refsource_CONFIRM",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrfp-j2mp-hq9c"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/issues/42105"
          },
          {
            "tags": [
              "x_refsource_MISC",
              "x_transferred"
            ],
            "url": "https://github.com/tensorflow/tensorflow/commit/eccb7ec454e6617738554a255d77f08e60ee0808"
          }
        ],
        "title": "CVE Program Container"
      }
    ],
    "cna": {
      "affected": [
        {
          "product": "tensorflow",
          "vendor": "tensorflow",
          "versions": [
            {
              "status": "affected",
              "version": "\u003c 2.4.0"
            }
          ]
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "value": "In Tensorflow before version 2.4.0, an attacker can pass an invalid `axis` value to `tf.quantization.quantize_and_dequantize`. This results in accessing a dimension outside the rank of the input tensor in the C++ kernel implementation. However, dim_size only does a DCHECK to validate the argument and then uses it to access the corresponding element of an array. Since in normal builds, `DCHECK`-like macros are no-ops, this results in segfault and access out of bounds of the array. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved."
        }
      ],
      "metrics": [
        {
          "cvssV3_1": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-125",
              "description": "CWE-125 Out-of-bounds Read",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2020-10-21T20:20:15",
        "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
        "shortName": "GitHub_M"
      },
      "references": [
        {
          "tags": [
            "x_refsource_CONFIRM"
          ],
          "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrfp-j2mp-hq9c"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/issues/42105"
        },
        {
          "tags": [
            "x_refsource_MISC"
          ],
          "url": "https://github.com/tensorflow/tensorflow/commit/eccb7ec454e6617738554a255d77f08e60ee0808"
        }
      ],
      "source": {
        "advisory": "GHSA-rrfp-j2mp-hq9c",
        "discovery": "UNKNOWN"
      },
      "title": "Segfault in Tensorflow",
      "x_legacyV4Record": {
        "CVE_data_meta": {
          "ASSIGNER": "security-advisories@github.com",
          "ID": "CVE-2020-15265",
          "STATE": "PUBLIC",
          "TITLE": "Segfault in Tensorflow"
        },
        "affects": {
          "vendor": {
            "vendor_data": [
              {
                "product": {
                  "product_data": [
                    {
                      "product_name": "tensorflow",
                      "version": {
                        "version_data": [
                          {
                            "version_value": "\u003c 2.4.0"
                          }
                        ]
                      }
                    }
                  ]
                },
                "vendor_name": "tensorflow"
              }
            ]
          }
        },
        "data_format": "MITRE",
        "data_type": "CVE",
        "data_version": "4.0",
        "description": {
          "description_data": [
            {
              "lang": "eng",
              "value": "In Tensorflow before version 2.4.0, an attacker can pass an invalid `axis` value to `tf.quantization.quantize_and_dequantize`. This results in accessing a dimension outside the rank of the input tensor in the C++ kernel implementation. However, dim_size only does a DCHECK to validate the argument and then uses it to access the corresponding element of an array. Since in normal builds, `DCHECK`-like macros are no-ops, this results in segfault and access out of bounds of the array. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved."
            }
          ]
        },
        "impact": {
          "cvss": {
            "attackComplexity": "HIGH",
            "attackVector": "NETWORK",
            "availabilityImpact": "HIGH",
            "baseScore": 5.9,
            "baseSeverity": "MEDIUM",
            "confidentialityImpact": "NONE",
            "integrityImpact": "NONE",
            "privilegesRequired": "NONE",
            "scope": "UNCHANGED",
            "userInteraction": "NONE",
            "vectorString": "CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H",
            "version": "3.1"
          }
        },
        "problemtype": {
          "problemtype_data": [
            {
              "description": [
                {
                  "lang": "eng",
                  "value": "CWE-125 Out-of-bounds Read"
                }
              ]
            }
          ]
        },
        "references": {
          "reference_data": [
            {
              "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrfp-j2mp-hq9c",
              "refsource": "CONFIRM",
              "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrfp-j2mp-hq9c"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/issues/42105",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/issues/42105"
            },
            {
              "name": "https://github.com/tensorflow/tensorflow/commit/eccb7ec454e6617738554a255d77f08e60ee0808",
              "refsource": "MISC",
              "url": "https://github.com/tensorflow/tensorflow/commit/eccb7ec454e6617738554a255d77f08e60ee0808"
            }
          ]
        },
        "source": {
          "advisory": "GHSA-rrfp-j2mp-hq9c",
          "discovery": "UNKNOWN"
        }
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa",
    "assignerShortName": "GitHub_M",
    "cveId": "CVE-2020-15265",
    "datePublished": "2020-10-21T20:20:15",
    "dateReserved": "2020-06-25T00:00:00",
    "dateUpdated": "2024-08-04T13:15:19.748Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1",
  "meta": {
    "nvd": "{\"cve\":{\"id\":\"CVE-2020-15265\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2020-10-21T21:15:12.257\",\"lastModified\":\"2024-11-21T05:05:13.733\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"In Tensorflow before version 2.4.0, an attacker can pass an invalid `axis` value to `tf.quantization.quantize_and_dequantize`. This results in accessing a dimension outside the rank of the input tensor in the C++ kernel implementation. However, dim_size only does a DCHECK to validate the argument and then uses it to access the corresponding element of an array. Since in normal builds, `DCHECK`-like macros are no-ops, this results in segfault and access out of bounds of the array. The issue is patched in eccb7ec454e6617738554a255d77f08e60ee0808 and TensorFlow 2.4.0 will be released containing the patch. TensorFlow nightly packages after this commit will also have the issue resolved.\"},{\"lang\":\"es\",\"value\":\"En Tensorflow versiones anteriores a  2.4.0, un atacante puede pasar un valor de \\\"axis\\\" no v\u00e1lido a la funci\u00f3n \\\"tf.quantization.quantize_and_dequantize\\\".\u0026#xa0;Esto resulta en el acceso a una dimensi\u00f3n fuera del rango del tensor de entrada en la implementaci\u00f3n del kernel de C++.\u0026#xa0;Sin embargo, dim_size solo hace un DCHECK para comprobar el argumento y luego lo usa para acceder al elemento correspondiente de una matriz.\u0026#xa0;Dado que en las compilaciones normales, las macros similares a \\\"DCHECK\\\" no son operativas, esto resulta en un fallo de segmentaci\u00f3n y un acceso fuera de los l\u00edmites de la matriz.\u0026#xa0;El problema est\u00e1 parcheado en eccb7ec454e6617738554a255d77f08e60ee0808 y TensorFlow versi\u00f3n 2.4.0 se publicar\u00e1 con el parche.\u0026#xa0;Los paquetes nocturnos de TensorFlow despu\u00e9s de esta confirmaci\u00f3n tambi\u00e9n resolver\u00e1n el problema\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.9,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"NONE\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":2.2,\"impactScore\":3.6},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":7.5,\"baseSeverity\":\"HIGH\",\"attackVector\":\"NETWORK\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"NONE\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":3.9,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:N/AC:L/Au:N/C:N/I:N/A:P\",\"baseScore\":5.0,\"accessVector\":\"NETWORK\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"MEDIUM\",\"exploitabilityScore\":10.0,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-125\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:-:*:*:*\",\"versionEndExcluding\":\"2.4.0\",\"matchCriteriaId\":\"837BA051-B044-46A7-BCDF-81785C1E1FF9\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/eccb7ec454e6617738554a255d77f08e60ee0808\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/issues/42105\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrfp-j2mp-hq9c\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/eccb7ec454e6617738554a255d77f08e60ee0808\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/issues/42105\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-rrfp-j2mp-hq9c\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}"
  }
}


Log in or create an account to share your comment.




Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.