Vulnerabilites related to Google - Keras
CVE-2025-1550 (GCVE-0-2025-1550)
Vulnerability from cvelistv5
Published
2025-03-11 08:12
Modified
2025-07-24 15:28
CWE
  • CWE-94 - Improper Control of Generation of Code ('Code Injection')
Summary
The Keras Model.load_model function permits arbitrary code execution, even with safe_mode=True, through a manually constructed, malicious .keras archive. By altering the config.json file within the archive, an attacker can specify arbitrary Python modules and functions, along with their arguments, to be loaded and executed during model loading.
Impacted products
Vendor Product Version
Google Keras Version: 3.0.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-1550",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-07-24T15:28:37.159599Z",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-07-24T15:28:42.230Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "collectionURL": "https://pypi.org/project/keras",
          "defaultStatus": "unaffected",
          "product": "Keras",
          "repo": "https://github.com/keras-team/keras",
          "vendor": "Google",
          "versions": [
            {
              "lessThan": "3.8.0",
              "status": "affected",
              "version": "3.0.0",
              "versionType": "python"
            }
          ]
        }
      ],
      "credits": [
        {
          "lang": "en",
          "type": "reporter",
          "value": "Gabriele Digregorio"
        }
      ],
      "descriptions": [
        {
          "lang": "en",
          "supportingMedia": [
            {
              "base64": false,
              "type": "text/html",
              "value": "The Keras \u003ccode\u003eModel.load_model\u003c/code\u003e function permits arbitrary code execution, even with \u003ccode\u003esafe_mode=True\u003c/code\u003e, through a manually constructed, malicious \u003ccode\u003e.keras\u003c/code\u003e archive. By altering the \u003ccode\u003econfig.json\u003c/code\u003e file within the archive, an attacker can specify arbitrary Python modules and functions, along with their arguments, to be loaded and executed during model loading."
            }
          ],
          "value": "The Keras Model.load_model function permits arbitrary code execution, even with safe_mode=True, through a manually constructed, malicious .keras archive. By altering the config.json file within the archive, an attacker can specify arbitrary Python modules and functions, along with their arguments, to be loaded and executed during model loading."
        }
      ],
      "impacts": [
        {
          "capecId": "CAPEC-88",
          "descriptions": [
            {
              "lang": "en",
              "value": "CAPEC-88: OS Command Injection"
            }
          ]
        }
      ],
      "metrics": [
        {
          "cvssV4_0": {
            "Automatable": "NOT_DEFINED",
            "Recovery": "NOT_DEFINED",
            "Safety": "NOT_DEFINED",
            "attackComplexity": "LOW",
            "attackRequirements": "PRESENT",
            "attackVector": "LOCAL",
            "baseScore": 7.3,
            "baseSeverity": "HIGH",
            "privilegesRequired": "LOW",
            "providerUrgency": "NOT_DEFINED",
            "subAvailabilityImpact": "HIGH",
            "subConfidentialityImpact": "HIGH",
            "subIntegrityImpact": "HIGH",
            "userInteraction": "ACTIVE",
            "valueDensity": "NOT_DEFINED",
            "vectorString": "CVSS:4.0/AV:L/AC:L/AT:P/PR:L/UI:A/VC:H/VI:H/VA:H/SC:H/SI:H/SA:H",
            "version": "4.0",
            "vulnAvailabilityImpact": "HIGH",
            "vulnConfidentialityImpact": "HIGH",
            "vulnIntegrityImpact": "HIGH",
            "vulnerabilityResponseEffort": "NOT_DEFINED"
          },
          "format": "CVSS",
          "scenarios": [
            {
              "lang": "en",
              "value": "GENERAL"
            }
          ]
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-94",
              "description": "CWE-94: Improper Control of Generation of Code (\u0027Code Injection\u0027)",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-07-22T15:26:36.374Z",
        "orgId": "14ed7db2-1595-443d-9d34-6215bf890778",
        "shortName": "Google"
      },
      "references": [
        {
          "url": "https://github.com/keras-team/keras/pull/20751"
        },
        {
          "url": "https://towerofhanoi.it/writeups/cve-2025-1550/"
        }
      ],
      "source": {
        "discovery": "UNKNOWN"
      },
      "title": "Arbitrary Code Execution via Crafted Keras Config for Model Loading",
      "x_generator": {
        "engine": "Vulnogram 0.2.0"
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "14ed7db2-1595-443d-9d34-6215bf890778",
    "assignerShortName": "Google",
    "cveId": "CVE-2025-1550",
    "datePublished": "2025-03-11T08:12:34.974Z",
    "dateReserved": "2025-02-21T11:13:03.951Z",
    "dateUpdated": "2025-07-24T15:28:42.230Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}

CVE-2025-8747 (GCVE-0-2025-8747)
Vulnerability from cvelistv5
Published
2025-08-11 07:21
Modified
2025-08-15 03:55
CWE
  • CWE-502 - Deserialization of Untrusted Data
Summary
A safe mode bypass vulnerability in the `Model.load_model` method in Keras versions 3.0.0 through 3.10.0 allows an attacker to achieve arbitrary code execution by convincing a user to load a specially crafted `.keras` model archive.
Impacted products
Vendor Product Version
Google Keras Version: 3.0.0    3.10.0
Create a notification for this product.
Show details on NVD website


{
  "containers": {
    "adp": [
      {
        "metrics": [
          {
            "other": {
              "content": {
                "id": "CVE-2025-8747",
                "options": [
                  {
                    "Exploitation": "poc"
                  },
                  {
                    "Automatable": "no"
                  },
                  {
                    "Technical Impact": "total"
                  }
                ],
                "role": "CISA Coordinator",
                "timestamp": "2025-08-14T00:00:00+00:00",
                "version": "2.0.3"
              },
              "type": "ssvc"
            }
          }
        ],
        "providerMetadata": {
          "dateUpdated": "2025-08-15T03:55:47.720Z",
          "orgId": "134c704f-9b21-4f2e-91b3-4a467353bcc0",
          "shortName": "CISA-ADP"
        },
        "references": [
          {
            "tags": [
              "exploit"
            ],
            "url": "https://jfrog.com/blog/keras-safe_mode-bypass-vulnerability/"
          }
        ],
        "title": "CISA ADP Vulnrichment"
      }
    ],
    "cna": {
      "affected": [
        {
          "defaultStatus": "unaffected",
          "product": "Keras",
          "repo": "https://github.com/keras-team/keras",
          "vendor": "Google",
          "versions": [
            {
              "lessThanOrEqual": "3.10.0",
              "status": "affected",
              "version": "3.0.0",
              "versionType": "semver"
            }
          ]
        }
      ],
      "credits": [
        {
          "lang": "en",
          "type": "reporter",
          "value": "JFrog Security Research Team"
        }
      ],
      "datePublic": "2025-06-14T09:00:00.000Z",
      "descriptions": [
        {
          "lang": "en",
          "supportingMedia": [
            {
              "base64": false,
              "type": "text/html",
              "value": "A safe mode bypass vulnerability in the `Model.load_model` method in Keras versions 3.0.0 through 3.10.0 allows an attacker to achieve arbitrary code execution by convincing a user to load a specially crafted `.keras` model archive."
            }
          ],
          "value": "A safe mode bypass vulnerability in the `Model.load_model` method in Keras versions 3.0.0 through 3.10.0 allows an attacker to achieve arbitrary code execution by convincing a user to load a specially crafted `.keras` model archive."
        }
      ],
      "impacts": [
        {
          "capecId": "CAPEC-242",
          "descriptions": [
            {
              "lang": "en",
              "value": "CAPEC-242 Code Injection"
            }
          ]
        }
      ],
      "metrics": [
        {
          "cvssV4_0": {
            "Automatable": "YES",
            "Recovery": "AUTOMATIC",
            "Safety": "NOT_DEFINED",
            "attackComplexity": "LOW",
            "attackRequirements": "NONE",
            "attackVector": "LOCAL",
            "baseScore": 8.6,
            "baseSeverity": "HIGH",
            "privilegesRequired": "LOW",
            "providerUrgency": "NOT_DEFINED",
            "subAvailabilityImpact": "HIGH",
            "subConfidentialityImpact": "HIGH",
            "subIntegrityImpact": "HIGH",
            "userInteraction": "PASSIVE",
            "valueDensity": "NOT_DEFINED",
            "vectorString": "CVSS:4.0/AV:L/AC:L/AT:N/PR:L/UI:P/VC:H/VI:H/VA:H/SC:H/SI:H/SA:H/AU:Y/R:A",
            "version": "4.0",
            "vulnAvailabilityImpact": "HIGH",
            "vulnConfidentialityImpact": "HIGH",
            "vulnIntegrityImpact": "HIGH",
            "vulnerabilityResponseEffort": "NOT_DEFINED"
          },
          "format": "CVSS",
          "scenarios": [
            {
              "lang": "en",
              "value": "GENERAL"
            }
          ]
        }
      ],
      "problemTypes": [
        {
          "descriptions": [
            {
              "cweId": "CWE-502",
              "description": "CWE-502 Deserialization of Untrusted Data",
              "lang": "en",
              "type": "CWE"
            }
          ]
        }
      ],
      "providerMetadata": {
        "dateUpdated": "2025-08-11T07:21:16.619Z",
        "orgId": "14ed7db2-1595-443d-9d34-6215bf890778",
        "shortName": "Google"
      },
      "references": [
        {
          "tags": [
            "patch"
          ],
          "url": "https://github.com/keras-team/keras/pull/21429"
        },
        {
          "tags": [
            "third-party-advisory"
          ],
          "url": "https://jfrog.com/blog/keras-safe_mode-bypass-vulnerability/"
        }
      ],
      "solutions": [
        {
          "lang": "en",
          "supportingMedia": [
            {
              "base64": false,
              "type": "text/html",
              "value": "Upgrade to a version of Keras with the fix implemented (version 3.11.0 or newer)."
            }
          ],
          "value": "Upgrade to a version of Keras with the fix implemented (version 3.11.0 or newer)."
        }
      ],
      "source": {
        "discovery": "EXTERNAL"
      },
      "title": "Keras safe_mode bypass allows arbitrary code execution when loading a malicious model.",
      "x_generator": {
        "engine": "Vulnogram 0.2.0"
      }
    }
  },
  "cveMetadata": {
    "assignerOrgId": "14ed7db2-1595-443d-9d34-6215bf890778",
    "assignerShortName": "Google",
    "cveId": "CVE-2025-8747",
    "datePublished": "2025-08-11T07:21:16.619Z",
    "dateReserved": "2025-08-08T09:37:17.811Z",
    "dateUpdated": "2025-08-15T03:55:47.720Z",
    "state": "PUBLISHED"
  },
  "dataType": "CVE_RECORD",
  "dataVersion": "5.1"
}