CVE-2021-29522
Vulnerability from cvelistv5
Published
2021-05-14 19:35
Modified
2024-08-03 22:11
Severity ?
EPSS score ?
Summary
TensorFlow is an end-to-end open source platform for machine learning. The `tf.raw_ops.Conv3DBackprop*` operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) does not check that the divisor used in computing the shard size is not zero. Thus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
References
▼ | URL | Tags | |
---|---|---|---|
security-advisories@github.com | https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa | Patch, Third Party Advisory | |
security-advisories@github.com | https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv | Exploit, Patch, Third Party Advisory | |
af854a3a-2127-422b-91ae-364da2661108 | https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa | Patch, Third Party Advisory | |
af854a3a-2127-422b-91ae-364da2661108 | https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv | Exploit, Patch, Third Party Advisory |
Impacted products
Vendor | Product | Version | ||
---|---|---|---|---|
tensorflow | tensorflow |
Version: < 2.1.4 Version: >= 2.2.0, < 2.2.3 Version: >= 2.3.0, < 2.3.3 Version: >= 2.4.0, < 2.4.2 |
{ containers: { adp: [ { providerMetadata: { dateUpdated: "2024-08-03T22:11:05.710Z", orgId: "af854a3a-2127-422b-91ae-364da2661108", shortName: "CVE", }, references: [ { tags: [ "x_refsource_CONFIRM", "x_transferred", ], url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv", }, { tags: [ "x_refsource_MISC", "x_transferred", ], url: "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa", }, ], title: "CVE Program Container", }, ], cna: { affected: [ { product: "tensorflow", vendor: "tensorflow", versions: [ { status: "affected", version: "< 2.1.4", }, { status: "affected", version: ">= 2.2.0, < 2.2.3", }, { status: "affected", version: ">= 2.3.0, < 2.3.3", }, { status: "affected", version: ">= 2.4.0, < 2.4.2", }, ], }, ], descriptions: [ { lang: "en", value: "TensorFlow is an end-to-end open source platform for machine learning. The `tf.raw_ops.Conv3DBackprop*` operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) does not check that the divisor used in computing the shard size is not zero. Thus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.", }, ], metrics: [ { cvssV3_1: { attackComplexity: "HIGH", attackVector: "LOCAL", availabilityImpact: "LOW", baseScore: 2.5, baseSeverity: "LOW", confidentialityImpact: "NONE", integrityImpact: "NONE", privilegesRequired: "LOW", scope: "UNCHANGED", userInteraction: "NONE", vectorString: "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", version: "3.1", }, }, ], problemTypes: [ { descriptions: [ { cweId: "CWE-369", description: "CWE-369: Divide By Zero", lang: "en", type: "CWE", }, ], }, ], providerMetadata: { dateUpdated: "2021-05-14T19:35:44", orgId: "a0819718-46f1-4df5-94e2-005712e83aaa", shortName: "GitHub_M", }, references: [ { tags: [ "x_refsource_CONFIRM", ], url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv", }, { tags: [ "x_refsource_MISC", ], url: "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa", }, ], source: { advisory: "GHSA-c968-pq7h-7fxv", discovery: "UNKNOWN", }, title: "Division by 0 in `Conv3DBackprop*`", x_legacyV4Record: { CVE_data_meta: { ASSIGNER: "security-advisories@github.com", ID: "CVE-2021-29522", STATE: "PUBLIC", TITLE: "Division by 0 in `Conv3DBackprop*`", }, affects: { vendor: { vendor_data: [ { product: { product_data: [ { product_name: "tensorflow", version: { version_data: [ { version_value: "< 2.1.4", }, { version_value: ">= 2.2.0, < 2.2.3", }, { version_value: ">= 2.3.0, < 2.3.3", }, { version_value: ">= 2.4.0, < 2.4.2", }, ], }, }, ], }, vendor_name: "tensorflow", }, ], }, }, data_format: "MITRE", data_type: "CVE", data_version: "4.0", description: { description_data: [ { lang: "eng", value: "TensorFlow is an end-to-end open source platform for machine learning. The `tf.raw_ops.Conv3DBackprop*` operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) does not check that the divisor used in computing the shard size is not zero. Thus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.", }, ], }, impact: { cvss: { attackComplexity: "HIGH", attackVector: "LOCAL", availabilityImpact: "LOW", baseScore: 2.5, baseSeverity: "LOW", confidentialityImpact: "NONE", integrityImpact: "NONE", privilegesRequired: "LOW", scope: "UNCHANGED", userInteraction: "NONE", vectorString: "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", version: "3.1", }, }, problemtype: { problemtype_data: [ { description: [ { lang: "eng", value: "CWE-369: Divide By Zero", }, ], }, ], }, references: { reference_data: [ { name: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv", refsource: "CONFIRM", url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv", }, { name: "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa", refsource: "MISC", url: "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa", }, ], }, source: { advisory: "GHSA-c968-pq7h-7fxv", discovery: "UNKNOWN", }, }, }, }, cveMetadata: { assignerOrgId: "a0819718-46f1-4df5-94e2-005712e83aaa", assignerShortName: "GitHub_M", cveId: "CVE-2021-29522", datePublished: "2021-05-14T19:35:44", dateReserved: "2021-03-30T00:00:00", dateUpdated: "2024-08-03T22:11:05.710Z", state: "PUBLISHED", }, dataType: "CVE_RECORD", dataVersion: "5.1", "vulnerability-lookup:meta": { nvd: "{\"cve\":{\"id\":\"CVE-2021-29522\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-05-14T20:15:11.617\",\"lastModified\":\"2024-11-21T06:01:18.193\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an end-to-end open source platform for machine learning. The `tf.raw_ops.Conv3DBackprop*` operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) does not check that the divisor used in computing the shard size is not zero. Thus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de código abierto de extremo a extremo para el aprendizaje automático. Las operaciones en \\\"tf.raw_ops.Conv3DBackprop*\\\" no comprueban que los tensores de entrada no estén vacíos. A su vez, esto resultaría en una división por 0. Esto es debido a que la implementación (https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) no comprueba que el divisor usado para calcular el tamaño del fragmento no es cero. Por lo tanto, si el atacante controla los tamaños de entrada, puede desencadenar una denegación de servicio por medio de una error de división por cero. La corrección será incluida en TensorFlow versión 2.5.0. También seleccionaremos este commit en TensorFlow versión 2.4.2, TensorFlow versión 2.3.3, TensorFlow versión 2.2.3 y TensorFlow versión 2.1.4, ya que estos también están afectados y aún están en el rango compatible\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L\",\"baseScore\":2.5,\"baseSeverity\":\"LOW\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.0,\"impactScore\":1.4},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:N/I:N/A:P\",\"baseScore\":2.1,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"LOW\",\"exploitabilityScore\":3.9,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-369\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"2.1.4\",\"matchCriteriaId\":\"323ABCCE-24EB-47CC-87F6-48C101477587\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.2.0\",\"versionEndExcluding\":\"2.2.3\",\"matchCriteriaId\":\"64ABA90C-0649-4BB0-89C9-83C14BBDCC0F\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.3\",\"matchCriteriaId\":\"0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.4.0\",\"versionEndExcluding\":\"2.4.2\",\"matchCriteriaId\":\"8259531B-A8AC-4F8B-B60F-B69DE4767C03\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}", }, }
Log in or create an account to share your comment.
Security Advisory comment format.
This schema specifies the format of a comment related to a security advisory.
Title of the comment
Description of the comment
Loading…
Loading…
Loading…
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.