CVE-2021-29522
Vulnerability from cvelistv5
Published
2021-05-14 19:35
Modified
2024-08-03 22:11
Severity ?
EPSS score ?
Summary
TensorFlow is an end-to-end open source platform for machine learning. The `tf.raw_ops.Conv3DBackprop*` operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) does not check that the divisor used in computing the shard size is not zero. Thus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
References
▼ | URL | Tags | |
---|---|---|---|
security-advisories@github.com | https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa | Patch, Third Party Advisory | |
security-advisories@github.com | https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv | Exploit, Patch, Third Party Advisory | |
af854a3a-2127-422b-91ae-364da2661108 | https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa | Patch, Third Party Advisory | |
af854a3a-2127-422b-91ae-364da2661108 | https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv | Exploit, Patch, Third Party Advisory |
Impacted products
Vendor | Product | Version | |
---|---|---|---|
▼ | tensorflow | tensorflow |
Version: < 2.1.4 Version: >= 2.2.0, < 2.2.3 Version: >= 2.3.0, < 2.3.3 Version: >= 2.4.0, < 2.4.2 |
|
{ "containers": { "adp": [ { "providerMetadata": { "dateUpdated": "2024-08-03T22:11:05.710Z", "orgId": "af854a3a-2127-422b-91ae-364da2661108", "shortName": "CVE" }, "references": [ { "tags": [ "x_refsource_CONFIRM", "x_transferred" ], "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv" }, { "tags": [ "x_refsource_MISC", "x_transferred" ], "url": "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa" } ], "title": "CVE Program Container" } ], "cna": { "affected": [ { "product": "tensorflow", "vendor": "tensorflow", "versions": [ { "status": "affected", "version": "\u003c 2.1.4" }, { "status": "affected", "version": "\u003e= 2.2.0, \u003c 2.2.3" }, { "status": "affected", "version": "\u003e= 2.3.0, \u003c 2.3.3" }, { "status": "affected", "version": "\u003e= 2.4.0, \u003c 2.4.2" } ] } ], "descriptions": [ { "lang": "en", "value": "TensorFlow is an end-to-end open source platform for machine learning. The `tf.raw_ops.Conv3DBackprop*` operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) does not check that the divisor used in computing the shard size is not zero. Thus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range." } ], "metrics": [ { "cvssV3_1": { "attackComplexity": "HIGH", "attackVector": "LOCAL", "availabilityImpact": "LOW", "baseScore": 2.5, "baseSeverity": "LOW", "confidentialityImpact": "NONE", "integrityImpact": "NONE", "privilegesRequired": "LOW", "scope": "UNCHANGED", "userInteraction": "NONE", "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", "version": "3.1" } } ], "problemTypes": [ { "descriptions": [ { "cweId": "CWE-369", "description": "CWE-369: Divide By Zero", "lang": "en", "type": "CWE" } ] } ], "providerMetadata": { "dateUpdated": "2021-05-14T19:35:44", "orgId": "a0819718-46f1-4df5-94e2-005712e83aaa", "shortName": "GitHub_M" }, "references": [ { "tags": [ "x_refsource_CONFIRM" ], "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv" }, { "tags": [ "x_refsource_MISC" ], "url": "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa" } ], "source": { "advisory": "GHSA-c968-pq7h-7fxv", "discovery": "UNKNOWN" }, "title": "Division by 0 in `Conv3DBackprop*`", "x_legacyV4Record": { "CVE_data_meta": { "ASSIGNER": "security-advisories@github.com", "ID": "CVE-2021-29522", "STATE": "PUBLIC", "TITLE": "Division by 0 in `Conv3DBackprop*`" }, "affects": { "vendor": { "vendor_data": [ { "product": { "product_data": [ { "product_name": "tensorflow", "version": { "version_data": [ { "version_value": "\u003c 2.1.4" }, { "version_value": "\u003e= 2.2.0, \u003c 2.2.3" }, { "version_value": "\u003e= 2.3.0, \u003c 2.3.3" }, { "version_value": "\u003e= 2.4.0, \u003c 2.4.2" } ] } } ] }, "vendor_name": "tensorflow" } ] } }, "data_format": "MITRE", "data_type": "CVE", "data_version": "4.0", "description": { "description_data": [ { "lang": "eng", "value": "TensorFlow is an end-to-end open source platform for machine learning. The `tf.raw_ops.Conv3DBackprop*` operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) does not check that the divisor used in computing the shard size is not zero. Thus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range." } ] }, "impact": { "cvss": { "attackComplexity": "HIGH", "attackVector": "LOCAL", "availabilityImpact": "LOW", "baseScore": 2.5, "baseSeverity": "LOW", "confidentialityImpact": "NONE", "integrityImpact": "NONE", "privilegesRequired": "LOW", "scope": "UNCHANGED", "userInteraction": "NONE", "vectorString": "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", "version": "3.1" } }, "problemtype": { "problemtype_data": [ { "description": [ { "lang": "eng", "value": "CWE-369: Divide By Zero" } ] } ] }, "references": { "reference_data": [ { "name": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv", "refsource": "CONFIRM", "url": "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv" }, { "name": "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa", "refsource": "MISC", "url": "https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa" } ] }, "source": { "advisory": "GHSA-c968-pq7h-7fxv", "discovery": "UNKNOWN" } } } }, "cveMetadata": { "assignerOrgId": "a0819718-46f1-4df5-94e2-005712e83aaa", "assignerShortName": "GitHub_M", "cveId": "CVE-2021-29522", "datePublished": "2021-05-14T19:35:44", "dateReserved": "2021-03-30T00:00:00", "dateUpdated": "2024-08-03T22:11:05.710Z", "state": "PUBLISHED" }, "dataType": "CVE_RECORD", "dataVersion": "5.1", "vulnerability-lookup:meta": { "nvd": "{\"cve\":{\"id\":\"CVE-2021-29522\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-05-14T20:15:11.617\",\"lastModified\":\"2024-11-21T06:01:18.193\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an end-to-end open source platform for machine learning. The `tf.raw_ops.Conv3DBackprop*` operations fail to validate that the input tensors are not empty. In turn, this would result in a division by 0. This is because the implementation(https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) does not check that the divisor used in computing the shard size is not zero. Thus, if attacker controls the input sizes, they can trigger a denial of service via a division by zero error. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de c\u00f3digo abierto de extremo a extremo para el aprendizaje autom\u00e1tico.\u0026#xa0;Las operaciones en \\\"tf.raw_ops.Conv3DBackprop*\\\" no comprueban que los tensores de entrada no est\u00e9n vac\u00edos.\u0026#xa0;A su vez, esto resultar\u00eda en una divisi\u00f3n por 0. Esto es debido a que la implementaci\u00f3n (https://github.com/tensorflow/tensorflow/blob/a91bb59769f19146d5a0c20060244378e878f140/tensorflow/core/kernels/conv_grad_ops_3d.cc#L430-L450) no comprueba que el divisor usado para calcular el tama\u00f1o del fragmento no es cero.\u0026#xa0;Por lo tanto, si el atacante controla los tama\u00f1os de entrada, puede desencadenar una denegaci\u00f3n de servicio por medio de una error de divisi\u00f3n por cero.\u0026#xa0;La correcci\u00f3n ser\u00e1 incluida en TensorFlow versi\u00f3n 2.5.0.\u0026#xa0;Tambi\u00e9n seleccionaremos este commit en TensorFlow versi\u00f3n 2.4.2, TensorFlow versi\u00f3n 2.3.3, TensorFlow versi\u00f3n 2.2.3 y TensorFlow versi\u00f3n 2.1.4, ya que estos tambi\u00e9n est\u00e1n afectados y a\u00fan est\u00e1n en el rango compatible\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L\",\"baseScore\":2.5,\"baseSeverity\":\"LOW\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.0,\"impactScore\":1.4},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:N/I:N/A:P\",\"baseScore\":2.1,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"LOW\",\"exploitabilityScore\":3.9,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-369\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"2.1.4\",\"matchCriteriaId\":\"323ABCCE-24EB-47CC-87F6-48C101477587\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.2.0\",\"versionEndExcluding\":\"2.2.3\",\"matchCriteriaId\":\"64ABA90C-0649-4BB0-89C9-83C14BBDCC0F\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.3\",\"matchCriteriaId\":\"0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.4.0\",\"versionEndExcluding\":\"2.4.2\",\"matchCriteriaId\":\"8259531B-A8AC-4F8B-B60F-B69DE4767C03\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/311403edbc9816df80274bd1ea8b3c0c0f22c3fa\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-c968-pq7h-7fxv\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}" } }
Loading…
Loading…
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.