CVE-2021-29517
Vulnerability from cvelistv5
Published
2021-05-14 19:36
Modified
2024-08-03 22:11
Severity ?
EPSS score ?
Summary
TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.
References
▼ | URL | Tags | |
---|---|---|---|
security-advisories@github.com | https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f | Patch, Third Party Advisory | |
security-advisories@github.com | https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv | Exploit, Patch, Third Party Advisory | |
af854a3a-2127-422b-91ae-364da2661108 | https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f | Patch, Third Party Advisory | |
af854a3a-2127-422b-91ae-364da2661108 | https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv | Exploit, Patch, Third Party Advisory |
Impacted products
Vendor | Product | Version | ||
---|---|---|---|---|
tensorflow | tensorflow |
Version: < 2.1.4 Version: >= 2.2.0, < 2.2.3 Version: >= 2.3.0, < 2.3.3 Version: >= 2.4.0, < 2.4.2 |
{ containers: { adp: [ { providerMetadata: { dateUpdated: "2024-08-03T22:11:05.568Z", orgId: "af854a3a-2127-422b-91ae-364da2661108", shortName: "CVE", }, references: [ { tags: [ "x_refsource_CONFIRM", "x_transferred", ], url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv", }, { tags: [ "x_refsource_MISC", "x_transferred", ], url: "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f", }, ], title: "CVE Program Container", }, ], cna: { affected: [ { product: "tensorflow", vendor: "tensorflow", versions: [ { status: "affected", version: "< 2.1.4", }, { status: "affected", version: ">= 2.2.0, < 2.2.3", }, { status: "affected", version: ">= 2.3.0, < 2.3.3", }, { status: "affected", version: ">= 2.4.0, < 2.4.2", }, ], }, ], descriptions: [ { lang: "en", value: "TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.", }, ], metrics: [ { cvssV3_1: { attackComplexity: "HIGH", attackVector: "LOCAL", availabilityImpact: "LOW", baseScore: 2.5, baseSeverity: "LOW", confidentialityImpact: "NONE", integrityImpact: "NONE", privilegesRequired: "LOW", scope: "UNCHANGED", userInteraction: "NONE", vectorString: "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", version: "3.1", }, }, ], problemTypes: [ { descriptions: [ { cweId: "CWE-369", description: "CWE-369: Divide By Zero", lang: "en", type: "CWE", }, ], }, ], providerMetadata: { dateUpdated: "2021-05-14T19:36:11", orgId: "a0819718-46f1-4df5-94e2-005712e83aaa", shortName: "GitHub_M", }, references: [ { tags: [ "x_refsource_CONFIRM", ], url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv", }, { tags: [ "x_refsource_MISC", ], url: "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f", }, ], source: { advisory: "GHSA-772p-x54p-hjrv", discovery: "UNKNOWN", }, title: "Division by zero in `Conv3D`", x_legacyV4Record: { CVE_data_meta: { ASSIGNER: "security-advisories@github.com", ID: "CVE-2021-29517", STATE: "PUBLIC", TITLE: "Division by zero in `Conv3D`", }, affects: { vendor: { vendor_data: [ { product: { product_data: [ { product_name: "tensorflow", version: { version_data: [ { version_value: "< 2.1.4", }, { version_value: ">= 2.2.0, < 2.2.3", }, { version_value: ">= 2.3.0, < 2.3.3", }, { version_value: ">= 2.4.0, < 2.4.2", }, ], }, }, ], }, vendor_name: "tensorflow", }, ], }, }, data_format: "MITRE", data_type: "CVE", data_version: "4.0", description: { description_data: [ { lang: "eng", value: "TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.", }, ], }, impact: { cvss: { attackComplexity: "HIGH", attackVector: "LOCAL", availabilityImpact: "LOW", baseScore: 2.5, baseSeverity: "LOW", confidentialityImpact: "NONE", integrityImpact: "NONE", privilegesRequired: "LOW", scope: "UNCHANGED", userInteraction: "NONE", vectorString: "CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L", version: "3.1", }, }, problemtype: { problemtype_data: [ { description: [ { lang: "eng", value: "CWE-369: Divide By Zero", }, ], }, ], }, references: { reference_data: [ { name: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv", refsource: "CONFIRM", url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv", }, { name: "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f", refsource: "MISC", url: "https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f", }, ], }, source: { advisory: "GHSA-772p-x54p-hjrv", discovery: "UNKNOWN", }, }, }, }, cveMetadata: { assignerOrgId: "a0819718-46f1-4df5-94e2-005712e83aaa", assignerShortName: "GitHub_M", cveId: "CVE-2021-29517", datePublished: "2021-05-14T19:36:11", dateReserved: "2021-03-30T00:00:00", dateUpdated: "2024-08-03T22:11:05.568Z", state: "PUBLISHED", }, dataType: "CVE_RECORD", dataVersion: "5.1", "vulnerability-lookup:meta": { nvd: "{\"cve\":{\"id\":\"CVE-2021-29517\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-05-14T20:15:11.390\",\"lastModified\":\"2024-11-21T06:01:17.610\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an end-to-end open source platform for machine learning. A malicious user could trigger a division by 0 in `Conv3D` implementation. The implementation(https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) does a modulo operation based on user controlled input. Thus, when `filter` has a 0 as the fifth element, this results in a division by 0. Additionally, if the shape of the two tensors is not valid, an Eigen assertion can be triggered, resulting in a program crash. The fix will be included in TensorFlow 2.5.0. We will also cherrypick this commit on TensorFlow 2.4.2, TensorFlow 2.3.3, TensorFlow 2.2.3 and TensorFlow 2.1.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de código abierto de extremo a extremo para el aprendizaje automático. Un usuario malicioso podría desencadenar una división por 0 en una implementación de \\\"Conv3D\\\". La implementación (https://github.com/tensorflow/tensorflow/blob/42033603003965bffac51ae171b51801565e002d/tensorflow/core/kernels/conv_ops_3d.cc#L143-L145) realiza una operación de módulo basada en una entrada controlada por el usuario. Por lo tanto, cuando \\\"filter\\\" presenta un 0 como quinto elemento, esto resulta en una división entre 0. Además, si la forma de los dos tensores no es válida, puede ser desencadenada una aserción Eigen, resultando en un bloqueo del programa. La corrección será incluída en TensorFlow versión 2.5.0. También seleccionaremos este commit en TensorFlow versión 2.4.2, TensorFlow versión 2.3.3, TensorFlow versión 2.2.3 y TensorFlow versión 2.1.4, ya que estos también están afectados y aún están en el rango admitido\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:H/PR:L/UI:N/S:U/C:N/I:N/A:L\",\"baseScore\":2.5,\"baseSeverity\":\"LOW\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"HIGH\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"LOW\"},\"exploitabilityScore\":1.0,\"impactScore\":1.4},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:N/I:N/A:P\",\"baseScore\":2.1,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"LOW\",\"exploitabilityScore\":3.9,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-369\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionEndExcluding\":\"2.1.4\",\"matchCriteriaId\":\"323ABCCE-24EB-47CC-87F6-48C101477587\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.2.0\",\"versionEndExcluding\":\"2.2.3\",\"matchCriteriaId\":\"64ABA90C-0649-4BB0-89C9-83C14BBDCC0F\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.3\",\"matchCriteriaId\":\"0F83E0CF-CBF6-4C24-8683-3E7A5DC95BA9\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.4.0\",\"versionEndExcluding\":\"2.4.2\",\"matchCriteriaId\":\"8259531B-A8AC-4F8B-B60F-B69DE4767C03\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/799f835a3dfa00a4d852defa29b15841eea9d64f\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\",\"Third Party Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-772p-x54p-hjrv\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Exploit\",\"Patch\",\"Third Party Advisory\"]}]}}", }, }
Log in or create an account to share your comment.
Security Advisory comment format.
This schema specifies the format of a comment related to a security advisory.
Title of the comment
Description of the comment
Loading…
Loading…
Loading…
Sightings
Author | Source | Type | Date |
---|
Nomenclature
- Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
- Confirmed: The vulnerability is confirmed from an analyst perspective.
- Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
- Patched: This vulnerability was successfully patched by the user reporting the sighting.
- Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
- Not confirmed: The user expresses doubt about the veracity of the vulnerability.
- Not patched: This vulnerability was not successfully patched by the user reporting the sighting.