ID CVE-2011-1478
Summary The napi_reuse_skb function in net/core/dev.c in the Generic Receive Offload (GRO) implementation in the Linux kernel before 2.6.38 does not reset the values of certain structure members, which might allow remote attackers to cause a denial of service (NULL pointer dereference) via a malformed VLAN frame.
References
Vulnerable Configurations
  • Linux Kernel 2.6.0
    cpe:2.3:o:linux:linux_kernel:2.6.0
  • Linux Kernel 2.6.1
    cpe:2.3:o:linux:linux_kernel:2.6.1
  • Linux Kernel 2.6.1 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.1:rc1
  • Linux Kernel 2.6.1 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.1:rc2
  • Linux Kernel 2.6.1 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.1:rc3
  • Linux Kernel 2.6.2
    cpe:2.3:o:linux:linux_kernel:2.6.2
  • Linux Kernel 2.6.2 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.2:rc1
  • Linux Kernel 2.6.2 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.2:rc2
  • Linux Kernel 2.6.2 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.2:rc3
  • Linux Kernel 2.6.3
    cpe:2.3:o:linux:linux_kernel:2.6.3
  • Linux Kernel 2.6.3 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.3:rc1
  • Linux Kernel 2.6.3 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.3:rc2
  • Linux Kernel 2.6.3 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.3:rc3
  • Linux Kernel 2.6.3 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.3:rc4
  • Linux Kernel 2.6.4
    cpe:2.3:o:linux:linux_kernel:2.6.4
  • Linux Kernel 2.6.4 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.4:rc1
  • Linux Kernel 2.6.4 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.4:rc2
  • Linux Kernel 2.6.4 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.4:rc3
  • Linux Kernel 2.6.5
    cpe:2.3:o:linux:linux_kernel:2.6.5
  • Linux Kernel 2.6.5 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.5:rc1
  • Linux Kernel 2.6.5 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.5:rc2
  • Linux Kernel 2.6.5 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.5:rc3
  • Linux Kernel 2.6.6
    cpe:2.3:o:linux:linux_kernel:2.6.6
  • Linux Kernel 2.6.6 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.6:rc1
  • Linux Kernel 2.6.6 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.6:rc2
  • Linux Kernel 2.6.6 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.6:rc3
  • Linux Kernel 2.6.7
    cpe:2.3:o:linux:linux_kernel:2.6.7
  • Linux Kernel 2.6.7 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.7:rc1
  • Linux Kernel 2.6.7 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.7:rc2
  • Linux Kernel 2.6.7 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.7:rc3
  • Linux Kernel 2.6.8
    cpe:2.3:o:linux:linux_kernel:2.6.8
  • Linux Kernel 2.6.8 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.8:rc1
  • Linux Kernel 2.6.8 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.8:rc2
  • Linux Kernel 2.6.8 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.8:rc3
  • Linux Kernel 2.6.8 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.8:rc4
  • Linux Kernel 2.6.8.1
    cpe:2.3:o:linux:linux_kernel:2.6.8.1
  • Linux Kernel 2.6.9
    cpe:2.3:o:linux:linux_kernel:2.6.9
  • Linux Kernel 2.6.9 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.9:rc1
  • Linux Kernel 2.6.9 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.9:rc2
  • Linux Kernel 2.6.9 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.9:rc3
  • Linux Kernel 2.6.9 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.9:rc4
  • Linux Kernel 2.6.10
    cpe:2.3:o:linux:linux_kernel:2.6.10
  • Linux Kernel 2.6.10 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.10:rc1
  • Linux Kernel 2.6.10 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.10:rc2
  • Linux Kernel 2.6.10 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.10:rc3
  • Linux Kernel 2.6.11
    cpe:2.3:o:linux:linux_kernel:2.6.11
  • Linux Kernel 2.6.11 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.11:rc1
  • Linux Kernel 2.6.11 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.11:rc2
  • Linux Kernel 2.6.11 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.11:rc3
  • Linux Kernel 2.6.11 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.11:rc4
  • Linux Kernel 2.6.11 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.11:rc5
  • Linux Kernel 2.6.11.1
    cpe:2.3:o:linux:linux_kernel:2.6.11.1
  • Linux Kernel 2.6.11.2
    cpe:2.3:o:linux:linux_kernel:2.6.11.2
  • Linux Kernel 2.6.11.3
    cpe:2.3:o:linux:linux_kernel:2.6.11.3
  • Linux Kernel 2.6.11.4
    cpe:2.3:o:linux:linux_kernel:2.6.11.4
  • Linux Kernel 2.6.11.5
    cpe:2.3:o:linux:linux_kernel:2.6.11.5
  • Linux Kernel 2.6.11.6
    cpe:2.3:o:linux:linux_kernel:2.6.11.6
  • Linux Kernel 2.6.11.7
    cpe:2.3:o:linux:linux_kernel:2.6.11.7
  • Linux Kernel 2.6.11.8
    cpe:2.3:o:linux:linux_kernel:2.6.11.8
  • Linux Kernel 2.6.11.9
    cpe:2.3:o:linux:linux_kernel:2.6.11.9
  • Linux Kernel 2.6.11.10
    cpe:2.3:o:linux:linux_kernel:2.6.11.10
  • Linux Kernel 2.6.11.11
    cpe:2.3:o:linux:linux_kernel:2.6.11.11
  • Linux Kernel 2.6.11.12
    cpe:2.3:o:linux:linux_kernel:2.6.11.12
  • Linux Kernel 2.6.12
    cpe:2.3:o:linux:linux_kernel:2.6.12
  • Linux Kernel 2.6.12 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.12:rc1
  • Linux Kernel 2.6.12 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.12:rc2
  • Linux Kernel 2.6.12 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.12:rc3
  • Linux Kernel 2.6.12 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.12:rc4
  • Linux Kernel 2.6.12 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.12:rc5
  • Linux Kernel 2.6.12 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.12:rc6
  • Linux Kernel 2.6.12.1
    cpe:2.3:o:linux:linux_kernel:2.6.12.1
  • Linux Kernel 2.6.12.2
    cpe:2.3:o:linux:linux_kernel:2.6.12.2
  • Linux Kernel 2.6.12.3
    cpe:2.3:o:linux:linux_kernel:2.6.12.3
  • Linux Kernel 2.6.12.4
    cpe:2.3:o:linux:linux_kernel:2.6.12.4
  • Linux Kernel 2.6.12.5
    cpe:2.3:o:linux:linux_kernel:2.6.12.5
  • Linux Kernel 2.6.12.6
    cpe:2.3:o:linux:linux_kernel:2.6.12.6
  • Linux Kernel 2.6.13
    cpe:2.3:o:linux:linux_kernel:2.6.13
  • Linux Kernel 2.6.13 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.13:rc1
  • Linux Kernel 2.6.13 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.13:rc2
  • Linux Kernel 2.6.13 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.13:rc3
  • Linux Kernel 2.6.13 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.13:rc4
  • Linux Kernel 2.6.13 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.13:rc5
  • Linux Kernel 2.6.13 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.13:rc6
  • Linux Kernel 2.6.13 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.13:rc7
  • Linux Kernel 2.6.13.1
    cpe:2.3:o:linux:linux_kernel:2.6.13.1
  • Linux Kernel 2.6.13.2
    cpe:2.3:o:linux:linux_kernel:2.6.13.2
  • Linux Kernel 2.6.13.3
    cpe:2.3:o:linux:linux_kernel:2.6.13.3
  • Linux Kernel 2.6.13.4
    cpe:2.3:o:linux:linux_kernel:2.6.13.4
  • Linux Kernel 2.6.13.5
    cpe:2.3:o:linux:linux_kernel:2.6.13.5
  • Linux Kernel 2.6.14
    cpe:2.3:o:linux:linux_kernel:2.6.14
  • Linux Kernel 2.6.14 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.14:rc1
  • Linux Kernel 2.6.14 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.14:rc2
  • Linux Kernel 2.6.14 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.14:rc3
  • Linux Kernel 2.6.14 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.14:rc4
  • Linux Kernel 2.6.14 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.14:rc5
  • Linux Kernel 2.6.14.1
    cpe:2.3:o:linux:linux_kernel:2.6.14.1
  • Linux Kernel 2.6.14.2
    cpe:2.3:o:linux:linux_kernel:2.6.14.2
  • Linux Kernel 2.6.14.3
    cpe:2.3:o:linux:linux_kernel:2.6.14.3
  • Linux Kernel 2.6.14.4
    cpe:2.3:o:linux:linux_kernel:2.6.14.4
  • Linux Kernel 2.6.14.5
    cpe:2.3:o:linux:linux_kernel:2.6.14.5
  • Linux Kernel 2.6.14.6
    cpe:2.3:o:linux:linux_kernel:2.6.14.6
  • Linux Kernel 2.6.14.7
    cpe:2.3:o:linux:linux_kernel:2.6.14.7
  • Linux Kernel 2.6.15
    cpe:2.3:o:linux:linux_kernel:2.6.15
  • Linux Kernel 2.6.15 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.15:rc1
  • Linux Kernel 2.6.15 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.15:rc2
  • Linux Kernel 2.6.15 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.15:rc3
  • Linux Kernel 2.6.15 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.15:rc4
  • Linux Kernel 2.6.15 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.15:rc5
  • Linux Kernel 2.6.15 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.15:rc6
  • Linux Kernel 2.6.15 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.15:rc7
  • Linux Kernel 2.6.15.1
    cpe:2.3:o:linux:linux_kernel:2.6.15.1
  • Linux Kernel 2.6.15.2
    cpe:2.3:o:linux:linux_kernel:2.6.15.2
  • Linux Kernel 2.6.15.3
    cpe:2.3:o:linux:linux_kernel:2.6.15.3
  • Linux Kernel 2.6.15.4
    cpe:2.3:o:linux:linux_kernel:2.6.15.4
  • Linux Kernel 2.6.15.5
    cpe:2.3:o:linux:linux_kernel:2.6.15.5
  • Linux Kernel 2.6.15.6
    cpe:2.3:o:linux:linux_kernel:2.6.15.6
  • Linux Kernel 2.6.15.7
    cpe:2.3:o:linux:linux_kernel:2.6.15.7
  • Linux Kernel 2.6.16
    cpe:2.3:o:linux:linux_kernel:2.6.16
  • Linux Kernel 2.6.16 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.16:rc1
  • Linux Kernel 2.6.16 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.16:rc2
  • Linux Kernel 2.6.16 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.16:rc3
  • Linux Kernel 2.6.16 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.16:rc4
  • Linux Kernel 2.6.16 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.16:rc5
  • Linux Kernel 2.6.16 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.16:rc6
  • Linux Kernel 2.6.16.1
    cpe:2.3:o:linux:linux_kernel:2.6.16.1
  • Linux Kernel 2.6.16.2
    cpe:2.3:o:linux:linux_kernel:2.6.16.2
  • Linux Kernel 2.6.16.3
    cpe:2.3:o:linux:linux_kernel:2.6.16.3
  • Linux Kernel 2.6.16.4
    cpe:2.3:o:linux:linux_kernel:2.6.16.4
  • Linux Kernel 2.6.16.5
    cpe:2.3:o:linux:linux_kernel:2.6.16.5
  • Linux Kernel 2.6.16.6
    cpe:2.3:o:linux:linux_kernel:2.6.16.6
  • Linux Kernel 2.6.16.7
    cpe:2.3:o:linux:linux_kernel:2.6.16.7
  • Linux Kernel 2.6.16.8
    cpe:2.3:o:linux:linux_kernel:2.6.16.8
  • Linux Kernel 2.6.16.9
    cpe:2.3:o:linux:linux_kernel:2.6.16.9
  • Linux Kernel 2.6.16.10
    cpe:2.3:o:linux:linux_kernel:2.6.16.10
  • Linux Kernel 2.6.16.11
    cpe:2.3:o:linux:linux_kernel:2.6.16.11
  • Linux Kernel 2.6.16.12
    cpe:2.3:o:linux:linux_kernel:2.6.16.12
  • Linux Kernel 2.6.16.13
    cpe:2.3:o:linux:linux_kernel:2.6.16.13
  • Linux Kernel 2.6.16.14
    cpe:2.3:o:linux:linux_kernel:2.6.16.14
  • Linux Kernel 2.6.16.15
    cpe:2.3:o:linux:linux_kernel:2.6.16.15
  • Linux Kernel 2.6.16.16
    cpe:2.3:o:linux:linux_kernel:2.6.16.16
  • Linux Kernel 2.6.16.17
    cpe:2.3:o:linux:linux_kernel:2.6.16.17
  • Linux Kernel 2.6.16.18
    cpe:2.3:o:linux:linux_kernel:2.6.16.18
  • Linux Kernel 2.6.16.19
    cpe:2.3:o:linux:linux_kernel:2.6.16.19
  • Linux Kernel 2.6.16.20
    cpe:2.3:o:linux:linux_kernel:2.6.16.20
  • Linux Kernel 2.6.16.21
    cpe:2.3:o:linux:linux_kernel:2.6.16.21
  • Linux Kernel 2.6.16.22
    cpe:2.3:o:linux:linux_kernel:2.6.16.22
  • Linux Kernel 2.6.16.23
    cpe:2.3:o:linux:linux_kernel:2.6.16.23
  • Linux Kernel 2.6.16.24
    cpe:2.3:o:linux:linux_kernel:2.6.16.24
  • Linux Kernel 2.6.16.25
    cpe:2.3:o:linux:linux_kernel:2.6.16.25
  • Linux Kernel 2.6.16.26
    cpe:2.3:o:linux:linux_kernel:2.6.16.26
  • Linux Kernel 2.6.16.27
    cpe:2.3:o:linux:linux_kernel:2.6.16.27
  • Linux Kernel 2.6.16.28
    cpe:2.3:o:linux:linux_kernel:2.6.16.28
  • Linux Kernel 2.6.16.29
    cpe:2.3:o:linux:linux_kernel:2.6.16.29
  • Linux Kernel 2.6.16.30
    cpe:2.3:o:linux:linux_kernel:2.6.16.30
  • Linux Kernel 2.6.16.31
    cpe:2.3:o:linux:linux_kernel:2.6.16.31
  • Linux Kernel 2.6.16.32
    cpe:2.3:o:linux:linux_kernel:2.6.16.32
  • Linux Kernel 2.6.16.33
    cpe:2.3:o:linux:linux_kernel:2.6.16.33
  • Linux Kernel 2.6.16.34
    cpe:2.3:o:linux:linux_kernel:2.6.16.34
  • Linux Kernel 2.6.16.35
    cpe:2.3:o:linux:linux_kernel:2.6.16.35
  • Linux Kernel 2.6.16.36
    cpe:2.3:o:linux:linux_kernel:2.6.16.36
  • Linux Kernel 2.6.16.37
    cpe:2.3:o:linux:linux_kernel:2.6.16.37
  • Linux Kernel 2.6.16.38
    cpe:2.3:o:linux:linux_kernel:2.6.16.38
  • Linux Kernel 2.6.16.39
    cpe:2.3:o:linux:linux_kernel:2.6.16.39
  • Linux Kernel 2.6.16.40
    cpe:2.3:o:linux:linux_kernel:2.6.16.40
  • Linux Kernel 2.6.16.41
    cpe:2.3:o:linux:linux_kernel:2.6.16.41
  • Linux Kernel 2.6.16.42
    cpe:2.3:o:linux:linux_kernel:2.6.16.42
  • Linux Kernel 2.6.16.43
    cpe:2.3:o:linux:linux_kernel:2.6.16.43
  • Linux Kernel 2.6.16.44
    cpe:2.3:o:linux:linux_kernel:2.6.16.44
  • Linux Kernel 2.6.16.45
    cpe:2.3:o:linux:linux_kernel:2.6.16.45
  • Linux Kernel 2.6.16.46
    cpe:2.3:o:linux:linux_kernel:2.6.16.46
  • Linux Kernel 2.6.16.47
    cpe:2.3:o:linux:linux_kernel:2.6.16.47
  • Linux Kernel 2.6.16.48
    cpe:2.3:o:linux:linux_kernel:2.6.16.48
  • Linux Kernel 2.6.16.49
    cpe:2.3:o:linux:linux_kernel:2.6.16.49
  • Linux Kernel 2.6.16.50
    cpe:2.3:o:linux:linux_kernel:2.6.16.50
  • Linux Kernel 2.6.16.51
    cpe:2.3:o:linux:linux_kernel:2.6.16.51
  • Linux Kernel 2.6.16.52
    cpe:2.3:o:linux:linux_kernel:2.6.16.52
  • Linux Kernel 2.6.16.53
    cpe:2.3:o:linux:linux_kernel:2.6.16.53
  • Linux Kernel 2.6.16.54
    cpe:2.3:o:linux:linux_kernel:2.6.16.54
  • Linux Kernel 2.16.55
    cpe:2.3:o:linux:linux_kernel:2.6.16.55
  • Linux Kernel 2.6.16.56
    cpe:2.3:o:linux:linux_kernel:2.6.16.56
  • Linux Kernel 2.6.16.57
    cpe:2.3:o:linux:linux_kernel:2.6.16.57
  • Linux Kernel 2.6.16.58
    cpe:2.3:o:linux:linux_kernel:2.6.16.58
  • Linux Kernel 2.6.16.59
    cpe:2.3:o:linux:linux_kernel:2.6.16.59
  • Linux Kernel 2.6.16.60
    cpe:2.3:o:linux:linux_kernel:2.6.16.60
  • Linux Kernel 2.6.16.61
    cpe:2.3:o:linux:linux_kernel:2.6.16.61
  • Linux Kernel 2.6.16.62
    cpe:2.3:o:linux:linux_kernel:2.6.16.62
  • Linux Kernel 2.6.17
    cpe:2.3:o:linux:linux_kernel:2.6.17
  • Linux Kernel 2.6.17 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.17:rc1
  • Linux Kernel 2.6.17 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.17:rc2
  • Linux Kernel 2.6.17 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.17:rc3
  • Linux Kernel 2.6.17 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.17:rc4
  • Linux Kernel 2.6.17 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.17:rc5
  • Linux Kernel 2.6.17 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.17:rc6
  • Linux Kernel 2.6.17.1
    cpe:2.3:o:linux:linux_kernel:2.6.17.1
  • Linux Kernel 2.6.17.2
    cpe:2.3:o:linux:linux_kernel:2.6.17.2
  • Linux Kernel 2.6.17.3
    cpe:2.3:o:linux:linux_kernel:2.6.17.3
  • Linux Kernel 2.6.17.4
    cpe:2.3:o:linux:linux_kernel:2.6.17.4
  • Linux Kernel 2.6.17.5
    cpe:2.3:o:linux:linux_kernel:2.6.17.5
  • Linux Kernel 2.6.17.6
    cpe:2.3:o:linux:linux_kernel:2.6.17.6
  • Linux Kernel 2.6.17.7
    cpe:2.3:o:linux:linux_kernel:2.6.17.7
  • Linux Kernel 2.6.17.8
    cpe:2.3:o:linux:linux_kernel:2.6.17.8
  • Linux Kernel 2.6.17.9
    cpe:2.3:o:linux:linux_kernel:2.6.17.9
  • Linux Kernel 2.6.17.10
    cpe:2.3:o:linux:linux_kernel:2.6.17.10
  • Linux Kernel 2.6.17.11
    cpe:2.3:o:linux:linux_kernel:2.6.17.11
  • Linux Kernel 2.6.17.12
    cpe:2.3:o:linux:linux_kernel:2.6.17.12
  • Linux Kernel 2.6.17.13
    cpe:2.3:o:linux:linux_kernel:2.6.17.13
  • Linux Kernel 2.6.17.14
    cpe:2.3:o:linux:linux_kernel:2.6.17.14
  • Linux Kernel 2.6.18
    cpe:2.3:o:linux:linux_kernel:2.6.18
  • Linux Kernel 2.6.18 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.18:rc1
  • Linux Kernel 2.6.18 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.18:rc2
  • Linux Kernel 2.6.18 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.18:rc3
  • Linux Kernel 2.6.18 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.18:rc4
  • Linux Kernel 2.6.18 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.18:rc5
  • Linux Kernel 2.6.18 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.18:rc6
  • Linux Kernel 2.6.18 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.18:rc7
  • Linux Kernel 2.6.18.1
    cpe:2.3:o:linux:linux_kernel:2.6.18.1
  • Linux Kernel 2.6.18.2
    cpe:2.3:o:linux:linux_kernel:2.6.18.2
  • Linux Kernel 2.6.18.3
    cpe:2.3:o:linux:linux_kernel:2.6.18.3
  • Linux Kernel 2.6.18.4
    cpe:2.3:o:linux:linux_kernel:2.6.18.4
  • Linux Kernel 2.6.18.5
    cpe:2.3:o:linux:linux_kernel:2.6.18.5
  • Linux Kernel 2.6.18.6
    cpe:2.3:o:linux:linux_kernel:2.6.18.6
  • Linux Kernel 2.6.18.7
    cpe:2.3:o:linux:linux_kernel:2.6.18.7
  • Linux Kernel 2.6.18.8
    cpe:2.3:o:linux:linux_kernel:2.6.18.8
  • Linux Kernel 2.6.19
    cpe:2.3:o:linux:linux_kernel:2.6.19
  • Linux Kernel 2.6.19 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.19:rc1
  • Linux Kernel 2.6.19 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.19:rc2
  • Linux Kernel 2.6.19 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.19:rc3
  • Linux Kernel 2.6.19 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.19:rc4
  • Linux Kernel 2.6.19 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.19:rc5
  • Linux Kernel 2.6.19 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.19:rc6
  • Linux Kernel 2.6.19.1
    cpe:2.3:o:linux:linux_kernel:2.6.19.1
  • Linux Kernel 2.6.19.2
    cpe:2.3:o:linux:linux_kernel:2.6.19.2
  • Linux Kernel 2.6.19.3
    cpe:2.3:o:linux:linux_kernel:2.6.19.3
  • Linux Kernel 2.6.19.4
    cpe:2.3:o:linux:linux_kernel:2.6.19.4
  • Linux Kernel 2.6.19.5
    cpe:2.3:o:linux:linux_kernel:2.6.19.5
  • Linux Kernel 2.6.19.6
    cpe:2.3:o:linux:linux_kernel:2.6.19.6
  • Linux Kernel 2.6.19.7
    cpe:2.3:o:linux:linux_kernel:2.6.19.7
  • Linux Kernel 2.6.20
    cpe:2.3:o:linux:linux_kernel:2.6.20
  • Linux Kernel 2.6.20 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.20:rc1
  • Linux Kernel 2.6.20 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.20:rc2
  • Linux Kernel 2.6.20 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.20:rc3
  • Linux Kernel 2.6.20 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.20:rc4
  • Linux Kernel 2.6.20 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.20:rc5
  • Linux Kernel 2.6.20 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.20:rc6
  • Linux Kernel 2.6.20 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.20:rc7
  • Linux Kernel 2.6.20.1
    cpe:2.3:o:linux:linux_kernel:2.6.20.1
  • Linux Kernel 2.6.20.2
    cpe:2.3:o:linux:linux_kernel:2.6.20.2
  • Linux Kernel 2.6.20.3
    cpe:2.3:o:linux:linux_kernel:2.6.20.3
  • Linux Kernel 2.6.20.4
    cpe:2.3:o:linux:linux_kernel:2.6.20.4
  • Linux Kernel 2.6.20.5
    cpe:2.3:o:linux:linux_kernel:2.6.20.5
  • Linux Kernel 2.6.20.6
    cpe:2.3:o:linux:linux_kernel:2.6.20.6
  • Linux Kernel 2.6.20.7
    cpe:2.3:o:linux:linux_kernel:2.6.20.7
  • Linux Kernel 2.6.20.8
    cpe:2.3:o:linux:linux_kernel:2.6.20.8
  • Linux Kernel 2.6.20.9
    cpe:2.3:o:linux:linux_kernel:2.6.20.9
  • Linux Kernel 2.6.20.10
    cpe:2.3:o:linux:linux_kernel:2.6.20.10
  • Linux Kernel 2.6.20.11
    cpe:2.3:o:linux:linux_kernel:2.6.20.11
  • Linux Kernel 2.6.20.12
    cpe:2.3:o:linux:linux_kernel:2.6.20.12
  • Linux Kernel 2.6.20.13
    cpe:2.3:o:linux:linux_kernel:2.6.20.13
  • Linux Kernel 2.6.20.14
    cpe:2.3:o:linux:linux_kernel:2.6.20.14
  • Linux Kernel 2.6.20.15
    cpe:2.3:o:linux:linux_kernel:2.6.20.15
  • Linux Kernel 2.6.20.16
    cpe:2.3:o:linux:linux_kernel:2.6.20.16
  • Linux Kernel 2.6.20.17
    cpe:2.3:o:linux:linux_kernel:2.6.20.17
  • Linux Kernel 2.6.20.18
    cpe:2.3:o:linux:linux_kernel:2.6.20.18
  • Linux Kernel 2.6.20.19
    cpe:2.3:o:linux:linux_kernel:2.6.20.19
  • Linux Kernel 2.6.20.20
    cpe:2.3:o:linux:linux_kernel:2.6.20.20
  • Linux Kernel 2.6.20.21
    cpe:2.3:o:linux:linux_kernel:2.6.20.21
  • Linux Kernel 2.6.21
    cpe:2.3:o:linux:linux_kernel:2.6.21
  • Linux Kernel 2.6.21 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.21:rc1
  • Linux Kernel 2.6.21 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.21:rc2
  • Linux Kernel 2.6.21 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.21:rc3
  • Linux Kernel 2.6.21 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.21:rc4
  • Linux Kernel 2.6.21 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.21:rc5
  • Linux Kernel 2.6.21 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.21:rc6
  • Linux Kernel 2.6.21 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.21:rc7
  • Linux Kernel 2.6.21.1
    cpe:2.3:o:linux:linux_kernel:2.6.21.1
  • Linux Kernel 2.6.21.2
    cpe:2.3:o:linux:linux_kernel:2.6.21.2
  • Linux Kernel 2.6.21.3
    cpe:2.3:o:linux:linux_kernel:2.6.21.3
  • Linux Kernel 2.6.21.4
    cpe:2.3:o:linux:linux_kernel:2.6.21.4
  • Linux Kernel 2.6.21.5
    cpe:2.3:o:linux:linux_kernel:2.6.21.5
  • Linux Kernel 2.6.21.6
    cpe:2.3:o:linux:linux_kernel:2.6.21.6
  • Linux Kernel 2.6.21.7
    cpe:2.3:o:linux:linux_kernel:2.6.21.7
  • Linux Kernel 2.6.22
    cpe:2.3:o:linux:linux_kernel:2.6.22
  • Linux Kernel 2.6.22 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.22:rc1
  • Linux Kernel 2.6.22 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.22:rc2
  • Linux Kernel 2.6.22 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.22:rc3
  • Linux Kernel 2.6.22 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.22:rc4
  • Linux Kernel 2.6.22 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.22:rc5
  • Linux Kernel 2.6.22 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.22:rc6
  • Linux Kernel 2.6.22 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.22:rc7
  • Linux Kernel 2.6.22.1
    cpe:2.3:o:linux:linux_kernel:2.6.22.1
  • Linux Kernel 2.6.22.2
    cpe:2.3:o:linux:linux_kernel:2.6.22.2
  • Linux Kernel 2.6.22.3
    cpe:2.3:o:linux:linux_kernel:2.6.22.3
  • Linux Kernel 2.6.22.4
    cpe:2.3:o:linux:linux_kernel:2.6.22.4
  • Linux Kernel 2.6.22.5
    cpe:2.3:o:linux:linux_kernel:2.6.22.5
  • Linux Kernel 2.6.22.6
    cpe:2.3:o:linux:linux_kernel:2.6.22.6
  • Linux Kernel 2.6.22.7
    cpe:2.3:o:linux:linux_kernel:2.6.22.7
  • Linux Kernel 2.6.22.8
    cpe:2.3:o:linux:linux_kernel:2.6.22.8
  • Linux Kernel 2.6.22.9
    cpe:2.3:o:linux:linux_kernel:2.6.22.9
  • Linux Kernel 2.6.22.10
    cpe:2.3:o:linux:linux_kernel:2.6.22.10
  • Linux Kernel 2.6.22.11
    cpe:2.3:o:linux:linux_kernel:2.6.22.11
  • Linux Kernel 2.6.22.12
    cpe:2.3:o:linux:linux_kernel:2.6.22.12
  • Linux Kernel 2.6.22.13
    cpe:2.3:o:linux:linux_kernel:2.6.22.13
  • Linux Kernel 2.6.22.14
    cpe:2.3:o:linux:linux_kernel:2.6.22.14
  • Linux Kernel 2.6.22.15
    cpe:2.3:o:linux:linux_kernel:2.6.22.15
  • Linux Kernel 2.6.22.16
    cpe:2.3:o:linux:linux_kernel:2.6.22.16
  • Linux Kernel 2.6.22.17
    cpe:2.3:o:linux:linux_kernel:2.6.22.17
  • Linux Kernel 2.6.22.18
    cpe:2.3:o:linux:linux_kernel:2.6.22.18
  • Linux Kernel 2.6.22.19
    cpe:2.3:o:linux:linux_kernel:2.6.22.19
  • Linux Kernel 2.6.22.20
    cpe:2.3:o:linux:linux_kernel:2.6.22.20
  • Linux Kernel 2.6.22.21
    cpe:2.3:o:linux:linux_kernel:2.6.22.21
  • Linux Kernel 2.6.22.22
    cpe:2.3:o:linux:linux_kernel:2.6.22.22
  • Linux Kernel 2.6.23
    cpe:2.3:o:linux:linux_kernel:2.6.23
  • Linux Kernel 2.6.23 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc1
  • Linux Kernel 2.6.23 release candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc2
  • Linux Kernel 2.6.23 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc3
  • Linux Kernel 2.6.23 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc4
  • Linux Kernel 2.6.23 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc5
  • Linux Kernel 2.6.23 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc6
  • Linux Kernel 2.6.23 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc7
  • Linux Kernel 2.6.23 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc8
  • Linux Kernel 2.6.23 Release Candidate 9
    cpe:2.3:o:linux:linux_kernel:2.6.23:rc9
  • Linux Kernel 2.6.23.1
    cpe:2.3:o:linux:linux_kernel:2.6.23.1
  • Linux Kernel 2.6.23.2
    cpe:2.3:o:linux:linux_kernel:2.6.23.2
  • Linux Kernel 2.6.23.3
    cpe:2.3:o:linux:linux_kernel:2.6.23.3
  • Linux Kernel 2.6.23.4
    cpe:2.3:o:linux:linux_kernel:2.6.23.4
  • Linux Kernel 2.6.23.5
    cpe:2.3:o:linux:linux_kernel:2.6.23.5
  • Linux Kernel 2.6.23.6
    cpe:2.3:o:linux:linux_kernel:2.6.23.6
  • Linux Kernel 2.6.23.7
    cpe:2.3:o:linux:linux_kernel:2.6.23.7
  • Linux Kernel 2.6.23.8
    cpe:2.3:o:linux:linux_kernel:2.6.23.8
  • Linux Kernel 2.6.23.9
    cpe:2.3:o:linux:linux_kernel:2.6.23.9
  • Linux Kernel 2.6.23.10
    cpe:2.3:o:linux:linux_kernel:2.6.23.10
  • Linux Kernel 2.6.23.11
    cpe:2.3:o:linux:linux_kernel:2.6.23.11
  • Linux Kernel 2.6.23.12
    cpe:2.3:o:linux:linux_kernel:2.6.23.12
  • Linux Kernel 2.6.23.13
    cpe:2.3:o:linux:linux_kernel:2.6.23.13
  • Linux Kernel 2.6.23.14
    cpe:2.3:o:linux:linux_kernel:2.6.23.14
  • Linux Kernel 2.6.23.16
    cpe:2.3:o:linux:linux_kernel:2.6.23.15
  • Linux Kernel 2.6.23.16
    cpe:2.3:o:linux:linux_kernel:2.6.23.16
  • Linux Kernel 2.6.23.17
    cpe:2.3:o:linux:linux_kernel:2.6.23.17
  • Linux Kernel 2.6.24
    cpe:2.3:o:linux:linux_kernel:2.6.24
  • Linux Kernel 2.6.24 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc1
  • Linux Kernel 2.6.24 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc2
  • Linux Kernel 2.6.24 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc3
  • Linux Kernel 2.6.24 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc4
  • Linux Kernel 2.6.24 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc5
  • Linux Kernel 2.6.24 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc6
  • Linux Kernel 2.6.24 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc7
  • Linux Kernel 2.6.24 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.24:rc8
  • Linux Kernel 2.6.24.1
    cpe:2.3:o:linux:linux_kernel:2.6.24.1
  • Linux Kernel 2.6.24.2
    cpe:2.3:o:linux:linux_kernel:2.6.24.2
  • Linux Kernel 2.6.24.3
    cpe:2.3:o:linux:linux_kernel:2.6.24.3
  • Linux Kernel 2.6.24.4
    cpe:2.3:o:linux:linux_kernel:2.6.24.4
  • Linux Kernel 2.6.24.5
    cpe:2.3:o:linux:linux_kernel:2.6.24.5
  • Linux Kernel 2.6.24.6
    cpe:2.3:o:linux:linux_kernel:2.6.24.6
  • Linux Kernel 2.6.24.7
    cpe:2.3:o:linux:linux_kernel:2.6.24.7
  • Linux Kernel 2.6.25
    cpe:2.3:o:linux:linux_kernel:2.6.25
  • Linux Kernel 2.6.25 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc1
  • Linux Kernel 2.6.25 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc2
  • Linux Kernel 2.6.25 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc3
  • Linux Kernel 2.6.25 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc4
  • Linux Kernel 2.6.25 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc5
  • Linux Kernel 2.6.25 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc6
  • Linux Kernel 2.6.25 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc7
  • Linux Kernel 2.6.25 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc8
  • Linux Kernel 2.6.25 Release Candidate 9
    cpe:2.3:o:linux:linux_kernel:2.6.25:rc9
  • Linux Kernel 2.6.25.1
    cpe:2.3:o:linux:linux_kernel:2.6.25.1
  • Linux Kernel 2.6.25.2
    cpe:2.3:o:linux:linux_kernel:2.6.25.2
  • Linux Kernel 2.6.25.3
    cpe:2.3:o:linux:linux_kernel:2.6.25.3
  • Linux Kernel 2.6.25.4
    cpe:2.3:o:linux:linux_kernel:2.6.25.4
  • Linux Kernel 2.6.25.5
    cpe:2.3:o:linux:linux_kernel:2.6.25.5
  • Linux Kernel 2.6.25.6
    cpe:2.3:o:linux:linux_kernel:2.6.25.6
  • Linux Kernel 2.6.25.7
    cpe:2.3:o:linux:linux_kernel:2.6.25.7
  • Linux Kernel 2.6.25.8
    cpe:2.3:o:linux:linux_kernel:2.6.25.8
  • Linux Kernel 2.6.25.9
    cpe:2.3:o:linux:linux_kernel:2.6.25.9
  • Linux Kernel 2.6.25.10
    cpe:2.3:o:linux:linux_kernel:2.6.25.10
  • Linux Kernel 2.6.25.11
    cpe:2.3:o:linux:linux_kernel:2.6.25.11
  • Linux Kernel 2.6.25.12
    cpe:2.3:o:linux:linux_kernel:2.6.25.12
  • Linux Kernel 2.6.25.13
    cpe:2.3:o:linux:linux_kernel:2.6.25.13
  • Linux Kernel 2.6.25.14
    cpe:2.3:o:linux:linux_kernel:2.6.25.14
  • Linux Kernel 2.6.25.15
    cpe:2.3:o:linux:linux_kernel:2.6.25.15
  • Linux Kernel 2.6.25.16
    cpe:2.3:o:linux:linux_kernel:2.6.25.16
  • Linux Kernel 2.6.25.17
    cpe:2.3:o:linux:linux_kernel:2.6.25.17
  • Linux Kernel 2.6.25.18
    cpe:2.3:o:linux:linux_kernel:2.6.25.18
  • Linux Kernel 2.6.25.19
    cpe:2.3:o:linux:linux_kernel:2.6.25.19
  • Linux Kernel 2.6.25.20
    cpe:2.3:o:linux:linux_kernel:2.6.25.20
  • Linux Kernel 2.6.26
    cpe:2.3:o:linux:linux_kernel:2.6.26
  • Linux Kernel 2.6.26 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc1
  • Linux Kernel 2.6.26 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc2
  • Linux Kernel 2.6.26 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc3
  • Linux Kernel 2.6.26 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc4
  • Linux Kernel 2.6.26 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc5
  • Linux Kernel 2.6.26 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc6
  • Linux Kernel 2.6.26 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc7
  • Linux Kernel 2.6.26 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc8
  • Linux Kernel 2.6.26 Release Candidate 9
    cpe:2.3:o:linux:linux_kernel:2.6.26:rc9
  • Linux Kernel 2.6.26.1
    cpe:2.3:o:linux:linux_kernel:2.6.26.1
  • Linux Kernel 2.6.26.2
    cpe:2.3:o:linux:linux_kernel:2.6.26.2
  • Linux Kernel 2.6.26.3
    cpe:2.3:o:linux:linux_kernel:2.6.26.3
  • Linux Kernel 2.6.26.4
    cpe:2.3:o:linux:linux_kernel:2.6.26.4
  • Linux Kernel 2.6.26.5
    cpe:2.3:o:linux:linux_kernel:2.6.26.5
  • Linux Kernel 2.6.26.6
    cpe:2.3:o:linux:linux_kernel:2.6.26.6
  • Linux Kernel 2.6.26.7
    cpe:2.3:o:linux:linux_kernel:2.6.26.7
  • Linux Kernel 2.6.26.8
    cpe:2.3:o:linux:linux_kernel:2.6.26.8
  • Linux Kernel 2.6.27
    cpe:2.3:o:linux:linux_kernel:2.6.27
  • Linux Kernel 2.6.27 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc1
  • Linux Kernel 2.6.27 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc2
  • Linux Kernel 2.6.27 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc3
  • Linux Kernel 2.6.27 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc4
  • Linux Kernel 2.6.27 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc5
  • Linux Kernel 2.6.27 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc6
  • Linux Kernel 2.6.27 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc7
  • Linux Kernel 2.6.27 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc8
  • Linux Kernel 2.6.27 Release Candidate 9
    cpe:2.3:o:linux:linux_kernel:2.6.27:rc9
  • Linux Kernel 2.6.27.1
    cpe:2.3:o:linux:linux_kernel:2.6.27.1
  • Linux Kernel 2.6.27.2
    cpe:2.3:o:linux:linux_kernel:2.6.27.2
  • Linux Kernel 2.6.27.3
    cpe:2.3:o:linux:linux_kernel:2.6.27.3
  • Linux Kernel 2.6.27.4
    cpe:2.3:o:linux:linux_kernel:2.6.27.4
  • Linux Kernel 2.6.27.5
    cpe:2.3:o:linux:linux_kernel:2.6.27.5
  • Linux Kernel 2.6.27.6
    cpe:2.3:o:linux:linux_kernel:2.6.27.6
  • Linux Kernel 2.6.27.7
    cpe:2.3:o:linux:linux_kernel:2.6.27.7
  • Linux Kernel 2.6.27.8
    cpe:2.3:o:linux:linux_kernel:2.6.27.8
  • Linux Kernel 2.6.27.9
    cpe:2.3:o:linux:linux_kernel:2.6.27.9
  • Linux Kernel 2.6.27.10
    cpe:2.3:o:linux:linux_kernel:2.6.27.10
  • Linux Kernel 2.6.27.11
    cpe:2.3:o:linux:linux_kernel:2.6.27.11
  • Linux Kernel 2.6.27.12
    cpe:2.3:o:linux:linux_kernel:2.6.27.12
  • Linux Kernel 2.6.27.13
    cpe:2.3:o:linux:linux_kernel:2.6.27.13
  • Linux Kernel 2.6.27.14
    cpe:2.3:o:linux:linux_kernel:2.6.27.14
  • Linux Kernel 2.6.27.15
    cpe:2.3:o:linux:linux_kernel:2.6.27.15
  • Linux Kernel 2.6.27.16
    cpe:2.3:o:linux:linux_kernel:2.6.27.16
  • Linux Kernel 2.6.27.17
    cpe:2.3:o:linux:linux_kernel:2.6.27.17
  • Linux Kernel 2.6.27.18
    cpe:2.3:o:linux:linux_kernel:2.6.27.18
  • Linux Kernel 2.6.27.19
    cpe:2.3:o:linux:linux_kernel:2.6.27.19
  • Linux Kernel 2.6.27.20
    cpe:2.3:o:linux:linux_kernel:2.6.27.20
  • Linux Kernel 2.6.27.21
    cpe:2.3:o:linux:linux_kernel:2.6.27.21
  • Linux Kernel 2.6.27.22
    cpe:2.3:o:linux:linux_kernel:2.6.27.22
  • Linux Kernel 2.6.27.23
    cpe:2.3:o:linux:linux_kernel:2.6.27.23
  • Linux Kernel 2.6.27.24
    cpe:2.3:o:linux:linux_kernel:2.6.27.24
  • Linux Kernel 2.6.27.25
    cpe:2.3:o:linux:linux_kernel:2.6.27.25
  • Linux Kernel 2.6.27.26
    cpe:2.3:o:linux:linux_kernel:2.6.27.26
  • Linux Kernel 2.6.27.27
    cpe:2.3:o:linux:linux_kernel:2.6.27.27
  • Linux Kernel 2.6.27.28
    cpe:2.3:o:linux:linux_kernel:2.6.27.28
  • Linux Kernel 2.6.27.29
    cpe:2.3:o:linux:linux_kernel:2.6.27.29
  • Linux Kernel 2.6.27.30
    cpe:2.3:o:linux:linux_kernel:2.6.27.30
  • Linux Kernel 2.6.27.31
    cpe:2.3:o:linux:linux_kernel:2.6.27.31
  • Linux Kernel 2.6.27.32
    cpe:2.3:o:linux:linux_kernel:2.6.27.32
  • Linux Kernel 2.6.27.33
    cpe:2.3:o:linux:linux_kernel:2.6.27.33
  • Linux Kernel 2.6.27.34
    cpe:2.3:o:linux:linux_kernel:2.6.27.34
  • Linux Kernel 2.6.27.35
    cpe:2.3:o:linux:linux_kernel:2.6.27.35
  • Linux Kernel 2.6.27.36
    cpe:2.3:o:linux:linux_kernel:2.6.27.36
  • Linux Kernel 2.6.27.37
    cpe:2.3:o:linux:linux_kernel:2.6.27.37
  • Linux Kernel 2.6.27.38
    cpe:2.3:o:linux:linux_kernel:2.6.27.38
  • Linux Kernel 2.6.27.39
    cpe:2.3:o:linux:linux_kernel:2.6.27.39
  • Linux Kernel 2.6.27.40
    cpe:2.3:o:linux:linux_kernel:2.6.27.40
  • Linux Kernel 2.6.27.41
    cpe:2.3:o:linux:linux_kernel:2.6.27.41
  • Linux Kernel 2.6.27.42
    cpe:2.3:o:linux:linux_kernel:2.6.27.42
  • Linux Kernel 2.6.27.43
    cpe:2.3:o:linux:linux_kernel:2.6.27.43
  • Linux Kernel 2.6.27.44
    cpe:2.3:o:linux:linux_kernel:2.6.27.44
  • Linux Kernel 2.6.27.45
    cpe:2.3:o:linux:linux_kernel:2.6.27.45
  • Linux Kernel 2.6.27.46
    cpe:2.3:o:linux:linux_kernel:2.6.27.46
  • Linux Kernel 2.6.27.47
    cpe:2.3:o:linux:linux_kernel:2.6.27.47
  • Linux Kernel 2.6.27.48
    cpe:2.3:o:linux:linux_kernel:2.6.27.48
  • Linux Kernel 2.6.27.49
    cpe:2.3:o:linux:linux_kernel:2.6.27.49
  • Linux Kernel 2.6.27.50
    cpe:2.3:o:linux:linux_kernel:2.6.27.50
  • Linux Kernel 2.6.27.51
    cpe:2.3:o:linux:linux_kernel:2.6.27.51
  • Linux Kernel 2.6.27.52
    cpe:2.3:o:linux:linux_kernel:2.6.27.52
  • Linux Kernel 2.6.27.53
    cpe:2.3:o:linux:linux_kernel:2.6.27.53
  • Linux Kernel 2.6.27.54
    cpe:2.3:o:linux:linux_kernel:2.6.27.54
  • Linux Kernel 2.6.27.55
    cpe:2.3:o:linux:linux_kernel:2.6.27.55
  • Linux Kernel 2.6.27.56
    cpe:2.3:o:linux:linux_kernel:2.6.27.56
  • Linux Kernel 2.6.27.57
    cpe:2.3:o:linux:linux_kernel:2.6.27.57
  • Linux Kernel 2.6.28
    cpe:2.3:o:linux:linux_kernel:2.6.28
  • Linux Kernel 2.6.28 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc1
  • Linux Kernel 2.6.28 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc2
  • Linux Kernel 2.6.28 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc3
  • Linux Kernel 2.6.28 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc4
  • Linux Kernel 2.6.28 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc5
  • Linux Kernel 2.6.28 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc6
  • Linux Kernel 2.6.28 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc7
  • Linux Kernel 2.6.28 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc8
  • Linux Kernel 2.6.28 Release Candidate 9
    cpe:2.3:o:linux:linux_kernel:2.6.28:rc9
  • Linux Kernel 2.6.28.1
    cpe:2.3:o:linux:linux_kernel:2.6.28.1
  • Linux Kernel 2.6.28.2
    cpe:2.3:o:linux:linux_kernel:2.6.28.2
  • Linux Kernel 2.6.28.3
    cpe:2.3:o:linux:linux_kernel:2.6.28.3
  • Linux Kernel 2.6.28.4
    cpe:2.3:o:linux:linux_kernel:2.6.28.4
  • Linux Kernel 2.6.28.5
    cpe:2.3:o:linux:linux_kernel:2.6.28.5
  • Linux Kernel 2.6.28.6
    cpe:2.3:o:linux:linux_kernel:2.6.28.6
  • Linux Kernel 2.6.28.7
    cpe:2.3:o:linux:linux_kernel:2.6.28.7
  • Linux Kernel 2.6.28.8
    cpe:2.3:o:linux:linux_kernel:2.6.28.8
  • Linux Kernel 2.6.28.9
    cpe:2.3:o:linux:linux_kernel:2.6.28.9
  • Linux Kernel 2.6.28.10
    cpe:2.3:o:linux:linux_kernel:2.6.28.10
  • Linux Kernel 2.6.29
    cpe:2.3:o:linux:linux_kernel:2.6.29
  • Linux Kernel 2.6.29 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc1
  • Linux Kernel 2.6.29 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc2
  • Linux Kernel 2.6.29 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc3
  • Linux Kernel 2.6.29 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc4
  • Linux Kernel 2.6.29 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc5
  • Linux Kernel 2.6.29 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc6
  • Linux Kernel 2.6.29 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc7
  • Linux Kernel 2.6.29 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.29:rc8
  • Linux Kernel 2.6.29.1
    cpe:2.3:o:linux:linux_kernel:2.6.29.1
  • Linux Kernel 2.6.29.2
    cpe:2.3:o:linux:linux_kernel:2.6.29.2
  • Linux Kernel 2.6.29.3
    cpe:2.3:o:linux:linux_kernel:2.6.29.3
  • Linux Kernel 2.6.29.4
    cpe:2.3:o:linux:linux_kernel:2.6.29.4
  • Linux Kernel 2.6.29.5
    cpe:2.3:o:linux:linux_kernel:2.6.29.5
  • Linux Kernel 2.6.29.6
    cpe:2.3:o:linux:linux_kernel:2.6.29.6
  • Linux Kernel 2.6.30
    cpe:2.3:o:linux:linux_kernel:2.6.30
  • Linux Kernel 2.6.30 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc1
  • Linux Kernel 2.6.30 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc2
  • Linux Kernel 2.6.30 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc3
  • Linux Kernel 2.6.30 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc4
  • Linux Kernel 2.6.30 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc5
  • Linux Kernel 2.6.30 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc6
  • Linux Kernel 2.6.30 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc7
  • Linux Kernel 2.6.30 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.30:rc8
  • Linux Kernel 2.6.30.1
    cpe:2.3:o:linux:linux_kernel:2.6.30.1
  • Linux Kernel 2.6.30.2
    cpe:2.3:o:linux:linux_kernel:2.6.30.2
  • Linux Kernel 2.6.30.3
    cpe:2.3:o:linux:linux_kernel:2.6.30.3
  • Linux Kernel 2.6.30.4
    cpe:2.3:o:linux:linux_kernel:2.6.30.4
  • Linux Kernel 2.6.30.5
    cpe:2.3:o:linux:linux_kernel:2.6.30.5
  • Linux Kernel 2.6.30.6
    cpe:2.3:o:linux:linux_kernel:2.6.30.6
  • Linux Kernel 2.6.30.7
    cpe:2.3:o:linux:linux_kernel:2.6.30.7
  • Linux Kernel 2.6.30.8
    cpe:2.3:o:linux:linux_kernel:2.6.30.8
  • Linux Kernel 2.6.30.9
    cpe:2.3:o:linux:linux_kernel:2.6.30.9
  • Linux Kernel 2.6.30.10
    cpe:2.3:o:linux:linux_kernel:2.6.30.10
  • Linux Kernel 2.6.31
    cpe:2.3:o:linux:linux_kernel:2.6.31
  • Linux Kernel 2.6.31 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc1
  • Linux Kernel 2.6.31 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc2
  • Linux Kernel 2.6.31 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc3
  • Linux Kernel 2.6.31 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc4
  • Linux Kernel 2.6.31 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc5
  • Linux Kernel 2.6.31 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc6
  • linux Kernel 2.6.31 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc7
  • linux Kernel 2.6.31 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc8
  • linux Kernel 2.6.31 Release Candidate 9
    cpe:2.3:o:linux:linux_kernel:2.6.31:rc9
  • Linux Kernel 2.6.31.1
    cpe:2.3:o:linux:linux_kernel:2.6.31.1
  • Linux Kernel 2.6.31.2
    cpe:2.3:o:linux:linux_kernel:2.6.31.2
  • Linux Kernel 2.6.31.3
    cpe:2.3:o:linux:linux_kernel:2.6.31.3
  • Linux Kernel 2.6.31.4
    cpe:2.3:o:linux:linux_kernel:2.6.31.4
  • Linux Kernel 2.6.31.5
    cpe:2.3:o:linux:linux_kernel:2.6.31.5
  • Linux Kernel 2.6.31.6
    cpe:2.3:o:linux:linux_kernel:2.6.31.6
  • Linux Kernel 2.6.31.7
    cpe:2.3:o:linux:linux_kernel:2.6.31.7
  • Linux Kernel 2.6.31.8
    cpe:2.3:o:linux:linux_kernel:2.6.31.8
  • Linux Kernel 2.6.31.9
    cpe:2.3:o:linux:linux_kernel:2.6.31.9
  • Linux Kernel 2.6.31.10
    cpe:2.3:o:linux:linux_kernel:2.6.31.10
  • Linux Kernel 2.6.31.11
    cpe:2.3:o:linux:linux_kernel:2.6.31.11
  • Linux Kernel 2.6.31.12
    cpe:2.3:o:linux:linux_kernel:2.6.31.12
  • Linux Kernel 2.6.31.13
    cpe:2.3:o:linux:linux_kernel:2.6.31.13
  • Linux Kernel 2.6.31.14
    cpe:2.3:o:linux:linux_kernel:2.6.31.14
  • Linux Kernel 2.6.32
    cpe:2.3:o:linux:linux_kernel:2.6.32
  • Linux Kernel 2.6.32 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.32:rc1
  • Linux Kernel 2.6.32 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.32:rc3
  • Linux Kernel 2.6.32 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.32:rc4
  • Linux Kernel 2.6.32 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.32:rc5
  • Linux Kernel 2.6.32 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.32:rc6
  • Linux Kernel 2.6.32 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.32:rc7
  • Linux Kernel 2.6.32 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.32:rc8
  • Linux Kernel 2.6.32.1
    cpe:2.3:o:linux:linux_kernel:2.6.32.1
  • Linux Kernel 2.6.32.2
    cpe:2.3:o:linux:linux_kernel:2.6.32.2
  • Linux Kernel 2.6.32.3
    cpe:2.3:o:linux:linux_kernel:2.6.32.3
  • Linux Kernel 2.6.32.4
    cpe:2.3:o:linux:linux_kernel:2.6.32.4
  • Linux Kernel 2.6.32.5
    cpe:2.3:o:linux:linux_kernel:2.6.32.5
  • Linux Kernel 2.6.32.6
    cpe:2.3:o:linux:linux_kernel:2.6.32.6
  • Linux Kernel 2.6.32.7
    cpe:2.3:o:linux:linux_kernel:2.6.32.7
  • Linux Kernel 2.6.32.8
    cpe:2.3:o:linux:linux_kernel:2.6.32.8
  • Linux Kernel 2.6.32.9
    cpe:2.3:o:linux:linux_kernel:2.6.32.9
  • Linux Kernel 2.6.32.10
    cpe:2.3:o:linux:linux_kernel:2.6.32.10
  • Linux Kernel 2.6.32.11
    cpe:2.3:o:linux:linux_kernel:2.6.32.11
  • Linux Kernel 2.6.32.12
    cpe:2.3:o:linux:linux_kernel:2.6.32.12
  • Linux Kernel 2.6.32.13
    cpe:2.3:o:linux:linux_kernel:2.6.32.13
  • Linux Kernel 2.6.32.14
    cpe:2.3:o:linux:linux_kernel:2.6.32.14
  • Linux Kernel 2.6.32.15
    cpe:2.3:o:linux:linux_kernel:2.6.32.15
  • Linux Kernel 2.6.32.16
    cpe:2.3:o:linux:linux_kernel:2.6.32.16
  • Linux Kernel 2.6.32.17
    cpe:2.3:o:linux:linux_kernel:2.6.32.17
  • Linux Kernel 2.6.32.18
    cpe:2.3:o:linux:linux_kernel:2.6.32.18
  • Linux Kernel 2.6.32.19
    cpe:2.3:o:linux:linux_kernel:2.6.32.19
  • Linux Kernel 2.6.32.20
    cpe:2.3:o:linux:linux_kernel:2.6.32.20
  • Linux Kernel 2.6.32.21
    cpe:2.3:o:linux:linux_kernel:2.6.32.21
  • Linux Kernel 2.6.32.22
    cpe:2.3:o:linux:linux_kernel:2.6.32.22
  • Linux Kernel 2.6.32.23
    cpe:2.3:o:linux:linux_kernel:2.6.32.23
  • Linux Kernel 2.6.32.24
    cpe:2.3:o:linux:linux_kernel:2.6.32.24
  • Linux Kernel 2.6.32.25
    cpe:2.3:o:linux:linux_kernel:2.6.32.25
  • Linux Kernel 2.6.32.26
    cpe:2.3:o:linux:linux_kernel:2.6.32.26
  • Linux Kernel 2.6.32.27
    cpe:2.3:o:linux:linux_kernel:2.6.32.27
  • Linux Kernel 2.6.33
    cpe:2.3:o:linux:linux_kernel:2.6.33
  • Linux Kernel 2.6.33 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc1
  • Linux Kernel 2.6.33 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc2
  • Linux Kernel 2.6.33 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc3
  • Linux Kernel 2.6.33 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc4
  • Linux Kernel 2.6.33 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc5
  • Linux Kernel 2.6.33 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc6
  • Linux Kernel 2.6.33 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc7
  • Linux Kernel 2.6.33 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.33:rc8
  • Linux Kernel 2.6.33.1
    cpe:2.3:o:linux:linux_kernel:2.6.33.1
  • Linux Kernel 2.6.33.2
    cpe:2.3:o:linux:linux_kernel:2.6.33.2
  • Linux Kernel 2.6.33.3
    cpe:2.3:o:linux:linux_kernel:2.6.33.3
  • Linux Kernel 2.6.33.4
    cpe:2.3:o:linux:linux_kernel:2.6.33.4
  • Linux Kernel 2.6.33.5
    cpe:2.3:o:linux:linux_kernel:2.6.33.5
  • Linux Kernel 2.6.33.6
    cpe:2.3:o:linux:linux_kernel:2.6.33.6
  • Linux Kernel 2.6.33.7
    cpe:2.3:o:linux:linux_kernel:2.6.33.7
  • Linux Kernel 2.6.34
    cpe:2.3:o:linux:linux_kernel:2.6.34
  • Linux Kernel 2.6.34 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.34:rc1
  • Linux Kernel 2.6.34 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.34:rc2
  • Linux Kernel 2.6.34 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.34:rc3
  • Linux Kernel 2.6.34 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.34:rc4
  • Linux Kernel 2.6.34 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.34:rc5
  • Linux Kernel 2.6.34 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.34:rc6
  • Linux Kernel 2.6.34 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.34:rc7
  • Linux Kernel 2.6.34.1
    cpe:2.3:o:linux:linux_kernel:2.6.34.1
  • Linux Kernel 2.6.34.2
    cpe:2.3:o:linux:linux_kernel:2.6.34.2
  • Linux Kernel 2.6.34.3
    cpe:2.3:o:linux:linux_kernel:2.6.34.3
  • Linux Kernel 2.6.34.4
    cpe:2.3:o:linux:linux_kernel:2.6.34.4
  • Linux Kernel 2.6.34.5
    cpe:2.3:o:linux:linux_kernel:2.6.34.5
  • Linux Kernel 2.6.34.6
    cpe:2.3:o:linux:linux_kernel:2.6.34.6
  • Linux Kernel 2.6.34.7
    cpe:2.3:o:linux:linux_kernel:2.6.34.7
  • Linux Kernel 2.6.35
    cpe:2.3:o:linux:linux_kernel:2.6.35
  • Linux Kernel 2.6.35 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.35:rc1
  • Linux Kernel 2.6.35 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.35:rc2
  • Linux Kernel 2.6.35 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.35:rc3
  • Linux Kernel 2.6.35 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.35:rc4
  • Linux Kernel 2.6.35 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.35:rc5
  • Linux Kernel 2.6.35 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.35:rc6
  • Linux Kernel 2.6.35.1
    cpe:2.3:o:linux:linux_kernel:2.6.35.1
  • Linux Kernel 2.6.35.2
    cpe:2.3:o:linux:linux_kernel:2.6.35.2
  • Linux Kernel 2.6.35.3
    cpe:2.3:o:linux:linux_kernel:2.6.35.3
  • Linux Kernel 2.6.35.4
    cpe:2.3:o:linux:linux_kernel:2.6.35.4
  • Linux Kernel 2.6.35.5
    cpe:2.3:o:linux:linux_kernel:2.6.35.5
  • Linux Kernel 2.6.35.6
    cpe:2.3:o:linux:linux_kernel:2.6.35.6
  • Linux Kernel 2.6.35.7
    cpe:2.3:o:linux:linux_kernel:2.6.35.7
  • Linux Kernel 2.6.35.8
    cpe:2.3:o:linux:linux_kernel:2.6.35.8
  • Linux Kernel 2.6.35.9
    cpe:2.3:o:linux:linux_kernel:2.6.35.9
  • Linux Kernel 2.6.36
    cpe:2.3:o:linux:linux_kernel:2.6.36
  • Linux Kernel 2.6.36 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc1
  • Linux Kernel 2.6.36 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc2
  • Linux Kernel 2.6.36 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc3
  • Linux Kernel 2.6.36 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc4
  • Linux Kernel 2.6.36 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc5
  • Linux Kernel 2.6.36 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc6
  • Linux Kernel 2.6.36 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc7
  • Linux Kernel 2.6.36 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.36:rc8
  • Linux Kernel 2.6.36.1
    cpe:2.3:o:linux:linux_kernel:2.6.36.1
  • Linux Kernel 2.6.36.2
    cpe:2.3:o:linux:linux_kernel:2.6.36.2
  • Linux Kernel 2.6.36.3
    cpe:2.3:o:linux:linux_kernel:2.6.36.3
  • Linux Kernel 2.6.36.4
    cpe:2.3:o:linux:linux_kernel:2.6.36.4
  • Linux Kernel 2.6.37
    cpe:2.3:o:linux:linux_kernel:2.6.37
  • Linux Kernel 2.6.37 Release Candidate 1
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc1
  • Linux Kernel 2.6.37 Release Candidate 2
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc2
  • Linux Kernel 2.6.37 Release Candidate 3
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc3
  • Linux Kernel 2.6.37 Release Candidate 4
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc4
  • Linux Kernel 2.6.37 Release Candidate 5
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc5
  • Linux Kernel 2.6.37 Release Candidate 6
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc6
  • Linux Kernel 2.6.37 Release Candidate 7
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc7
  • Linux Kernel 2.6.37 Release Candidate 8
    cpe:2.3:o:linux:linux_kernel:2.6.37:rc8
  • Linux Kernel 2.6.37.1
    cpe:2.3:o:linux:linux_kernel:2.6.37.1
  • Linux Kernel 2.6.37.2
    cpe:2.3:o:linux:linux_kernel:2.6.37.2
  • Linux Kernel 2.6.37.3
    cpe:2.3:o:linux:linux_kernel:2.6.37.3
  • Linux Kernel 2.6.37.4
    cpe:2.3:o:linux:linux_kernel:2.6.37.4
  • Linux Kernel 2.6.37.5
    cpe:2.3:o:linux:linux_kernel:2.6.37.5
  • Linux Kernel 2.6.37.6
    cpe:2.3:o:linux:linux_kernel:2.6.37.6
CVSS
Base: 5.7 (as of 24-10-2011 - 11:41)
Impact:
Exploitability:
Access
VectorComplexityAuthentication
ADJACENT_NETWORK MEDIUM NONE
Impact
ConfidentialityIntegrityAvailability
NONE NONE COMPLETE
nessus via4
  • NASL family Red Hat Local Security Checks
    NASL id REDHAT-RHSA-2011-0439.NASL
    description An updated rhev-hypervisor package that fixes one security issue and one bug is now available. The Red Hat Security Response Team has rated this update as having moderate security impact. A Common Vulnerability Scoring System (CVSS) base score, which gives a detailed severity rating, is available from the CVE link in the References section. The rhev-hypervisor package provides a Red Hat Enterprise Virtualization Hypervisor ISO disk image. The Red Hat Enterprise Virtualization Hypervisor is a dedicated Kernel-based Virtual Machine (KVM) hypervisor. It includes everything necessary to run and manage virtual machines: A subset of the Red Hat Enterprise Linux operating environment and the Red Hat Enterprise Virtualization Agent. Note: Red Hat Enterprise Virtualization Hypervisor is only available for the Intel 64 and AMD64 architectures with virtualization extensions. A NULL pointer dereference flaw was found in the Generic Receive Offload (GRO) functionality in the Linux kernel's networking implementation. If both GRO and promiscuous mode were enabled on an interface in a virtual LAN (VLAN), it could result in a denial of service when a malformed VLAN frame is received on that interface. (CVE-2011-1478) Red Hat would like to thank Ryan Sweat for reporting CVE-2011-1478. This updated package provides updated components that include fixes for security issues; however, these issues have no security impact for Red Hat Enterprise Virtualization Hypervisor. These fixes are for dbus issue CVE-2010-4352; kernel issues CVE-2010-4346, CVE-2011-0521, CVE-2011-0710, CVE-2011-1010, and CVE-2011-1090; libvirt issue CVE-2011-1146; and openldap issue CVE-2011-1024. This update also fixes the following bug : * Previously, network drivers that had Large Receive Offload (LRO) enabled by default caused the system to run slow when using software bridging. With this update, Red Hat Enterprise Virtualization Hypervisor disables LRO as a part of a modprobe configuration. (BZ#692864) Also in this erratum, the rhev-hypervisor-pxe RPM has been dropped. As Red Hat Enterprise Virtualization Hypervisor includes Red Hat Enterprise Virtualization Manager Agent (VDSM), the bug fixes from the VDSM update RHBA-2011:0424 have been included in this update : https://rhn.redhat.com/errata/RHBA-2011-0424.html Users of Red Hat Enterprise Virtualization Hypervisor are advised to upgrade to this updated package, which resolves these issues.
    last seen 2019-02-21
    modified 2018-12-20
    plugin id 79278
    published 2014-11-17
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=79278
    title RHEL 5 : rhev-hypervisor (RHSA-2011:0439)
  • NASL family Misc.
    NASL id VMWARE_VMSA-2011-0012_REMOTE.NASL
    description The remote VMware ESX / ESXi host is missing a security-related patch. It is, therefore, affected by multiple vulnerabilities in several third-party components and libraries : - Kernel - krb5 - glibc - mtp2sas - mptsas - mptspi
    last seen 2019-02-21
    modified 2018-08-16
    plugin id 89680
    published 2016-03-04
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=89680
    title VMware ESX / ESXi Third-Party Libraries Multiple Vulnerabilities (VMSA-2011-0012) (remote check)
  • NASL family SuSE Local Security Checks
    NASL id SUSE_11_KERNEL-111202.NASL
    description The SUSE Linux Enterprise 11 Service Pack 1 kernel has been updated to version 2.6.32.49 and fixes various bugs and security issues. - The TCP/IP initial sequence number generation effectively only used 24 bits of 32 to generate randomness, making a brute-force man-in-the-middle attack on TCP/IP connections feasible. The generator was changed to use full 32bit randomness. (CVE-2011-3188) - Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. (CVE-2011-2699) - A NULL ptr dereference on mounting corrupt hfs filesystems was fixed which could be used by local attackers to crash the kernel. (CVE-2011-2203) - Added a kernel option to ensure ecryptfs is mounting only on paths belonging to the current ui, which would have allowed local attackers to potentially gain privileges via symlink attacks. (CVE-2011-1833) - The Generic Receive Offload (GRO) implementation in the Linux kernel allowed remote attackers to cause a denial of service via crafted VLAN packets that are processed by the napi_reuse_skb function, leading to (1) a memory leak or (2) memory corruption, a different vulnerability than CVE-2011-1478. (CVE-2011-1576) - A name overflow in the hfs filesystem was fixed, where mounting a corrupted hfs filesystem could lead to a stack overflow and code execution in the kernel. This requires a local attacker to be able to mount hfs filesystems. (CVE-2011-4330) - A bug was found in the way headroom check was performed in udp6_ufo_fragment() function. A remote attacker could use this flaw to crash the system. (CVE-2011-4326) The following non-security bugs have been fixed : - ALSA: hda - Fix S3/S4 problem on machines with VREF-pin mute-LED. (bnc#732535) - patches.xen/xen-pcpu-hotplug: Fix a double kfree(). - ixgbe: fix bug with vlan strip in promsic mode (bnc#687049, fate#311821). - ixgbe: fix panic when shutting down system with WoL enabled. - fnic: Allow users to modify dev_loss_tmo setting. (bnc#719786) - x86, intel: Do not mark sched_clock() as stable. (bnc#725709) - ALSA: hda - Keep vref-LED during power-saving on IDT codecs. (bnc#731981) - cifs: Assume passwords are encoded according to iocharset. (bnc#731035) - scsi_dh: Check queuedata pointer before proceeding. (bnc#714744) - netback: use correct index for invalidation in netbk_tx_check_mop(). - ACPI video: introduce module parameter video.use_bios_initial_backlight. (bnc#731229) - SUNRPC: prevent task_cleanup running on freed xprt. (bnc#709671) - add device entry for Broadcom Valentine combo card. (bnc#722429) - quota: Fix WARN_ON in lookup_one_len. (bnc#728626) - Update Xen patches to 2.6.32.48. - pv-on-hvm/kexec: add xs_reset_watches to shutdown watches from old kernel. (bnc#694863) - x86: undo_limit_pages() must reset page count. - mm/vmstat.c: cache align vm_stat. (bnc#729721) - s390/ccwgroup: fix uevent vs dev attrs race (bnc#659101,LTC#69028). - Warn on pagecache limit usage (FATE309111). - SCSI: st: fix race in st_scsi_execute_end. (bnc#720536) - ACPI: introduce 'acpi_rsdp=' parameter for kdump. (bnc#717263) - elousb: Limit the workaround warning to one per error, control workaround activity. (bnc#719916) - SCSI: libiscsi: reset cmd timer if cmds are making progress. (bnc#691440) - SCSI: fix crash in scsi_dispatch_cmd(). (bnc#724989) - NFS/sunrpc: do not use a credential with extra groups. (bnc#725878) - s390/qdio: EQBS retry after CCQ 96 (bnc#725453,LTC#76117). - fcoe: Reduce max_sectors to 1024. (bnc#695898) - apparmor: return -ENOENT when there is no profile for a hat. (bnc#725502) - sched, cgroups: disallow attaching kthreadd. (bnc#721840) - nfs: Check validity of cl_rpcclient in nfs_server_list_show. (bnc#717884) - x86, vt-d: enable x2apic opt out (disabling x2apic through BIOS flag) (bnc#701183, fate#311989). - block: Free queue resources at blk_release_queue(). (bnc#723815) - ALSA: hda - Add post_suspend patch ops. (bnc#724800) - ALSA: hda - Allow codec-specific set_power_state ops. (bnc#724800) - ALSA: hda - Add support for vref-out based mute LED control on IDT codecs. (bnc#724800) - scsi_dh_rdac : Add definitions for different RDAC operating modes. (bnc#724365) - scsi_dh_rdac : Detect the different RDAC operating modes. (bnc#724365) - scsi_dh_rdac : decide whether to send mode select based on operating mode. (bnc#724365) - scsi_dh_rdac: Use WWID from C8 page instead of Subsystem id from C4 page to identify storage. (bnc#724365) - vlan: Match underlying dev carrier on vlan add. (bnc#722504) - scsi_lib: pause between error retries. (bnc#675127) - xfs: use KM_NOFS for allocations during attribute list operations. (bnc#721830) - bootsplash: Do not crash when no fb is set. (bnc#723542) - cifs: do not allow cifs_iget to match inodes of the wrong type. (bnc#711501) - cifs: fix noserverino handling when 1 extensions are enabled. (bnc#711501) - cifs: reduce false positives with inode aliasing serverino autodisable. (bnc#711501) - parport_pc: release IO region properly if unsupported ITE887x card is found. (bnc#721464) - writeback: avoid unnecessary calculation of bdi dirty thresholds. (bnc#721299) - 1: Fix bogus it_blocksize in VIO iommu code. (bnc#717690) - ext4: Fix max file size and logical block counting of extent format file. (bnc#706374) - novfs: Unable to change password in the Novell Client for Linux. (bnc#713229) - xfs: add more ilock tracing. - sched: move wakeup tracepoint above out_running. (bnc#712002) - config.conf: Build KMPs for the -trace flavor as well (fate#312759, bnc#712404, bnc#712405, bnc#721337). - memsw: remove noswapaccount kernel parameter. (bnc#719450)
    last seen 2019-02-21
    modified 2013-12-05
    plugin id 57297
    published 2011-12-14
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=57297
    title SuSE 11.1 Security Update : Linux kernel (SAT Patch Numbers 5493 / 5510 / 5511)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1202-1.NASL
    description Dan Rosenberg discovered that several network ioctls did not clear kernel memory correctly. A local user could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3296, CVE-2010-3297) Brad Spengler discovered that stack memory for new a process was not correctly calculated. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3858) Dan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859) Dan Rosenberg discovered that the CAN protocol on 64bit systems did not correctly calculate the size of certain buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3874) Nelson Elhage discovered that the Linux kernel IPv4 implementation did not properly audit certain bytecodes in netlink messages. A local attacker could exploit this to cause the kernel to hang, leading to a denial of service. (CVE-2010-3880) Dan Rosenberg discovered that IPC structures were not correctly initialized on 64bit systems. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4073) Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077) Dan Rosenberg discovered that the RME Hammerfall DSP audio interface driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4080, CVE-2010-4081) Dan Rosenberg discovered that the VIA video driver did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4082) Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083) James Bottomley discovered that the ICP vortex storage array controller driver did not validate certain sizes. A local attacker on a 64bit system could exploit this to crash the kernel, leading to a denial of service. (CVE-2010-4157) Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160) Dan Rosenberg discovered that certain iovec operations did not calculate page counts correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4162) Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668) Dave Jones discovered that the mprotect system call did not correctly handle merged VMAs. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4169) Dan Rosenberg discovered that the RDS protocol did not correctly check ioctl arguments. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4175) Alan Cox discovered that the HCI UART driver did not correctly check if a write operation was available. If the mmap_min-addr sysctl was changed from the Ubuntu default to a value of 0, a local attacker could exploit this flaw to gain root privileges. (CVE-2010-4242) Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) It was discovered that multithreaded exec did not handle CPU timers correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4248) It was discovered that named pipes did not correctly handle certain fcntl calls. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4256) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044) Kees Cook discovered that some ethtool functions did not correctly clear heap memory. A local attacker with CAP_NET_ADMIN privileges could exploit this to read portions of kernel heap memory, leading to a loss of privacy. (CVE-2010-4655) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Dan Rosenberg discovered that some ALSA drivers did not correctly check the adapter index during ioctl calls. If this driver was loaded, a local attacker could make a specially crafted ioctl call to gain root privileges. (CVE-2011-1169) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could expoit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. (CVE-2011-2699) The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918)
    last seen 2019-02-21
    modified 2016-05-26
    plugin id 56190
    published 2011-09-14
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=56190
    title USN-1202-1 : linux-ti-omap4 vulnerabilities
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2011-0429.NASL
    description From Red Hat Security Advisory 2011:0429 : Updated kernel packages that fix multiple security issues and several bugs are now available for Red Hat Enterprise Linux 5. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * A missing boundary check was found in the dvb_ca_ioctl() function in the Linux kernel's av7110 module. On systems that use old DVB cards that require the av7110 module, a local, unprivileged user could use this flaw to cause a denial of service or escalate their privileges. (CVE-2011-0521, Important) * An inconsistency was found in the interaction between the Linux kernel's method for allocating NFSv4 (Network File System version 4) ACL data and the method by which it was freed. This inconsistency led to a kernel panic which could be triggered by a local, unprivileged user with files owned by said user on an NFSv4 share. (CVE-2011-1090, Moderate) * A NULL pointer dereference flaw was found in the Generic Receive Offload (GRO) functionality in the Linux kernel's networking implementation. If both GRO and promiscuous mode were enabled on an interface in a virtual LAN (VLAN), it could result in a denial of service when a malformed VLAN frame is received on that interface. (CVE-2011-1478, Moderate) * A missing security check in the Linux kernel's implementation of the install_special_mapping() function could allow a local, unprivileged user to bypass the mmap_min_addr protection mechanism. (CVE-2010-4346, Low) * An information leak was found in the Linux kernel's task_show_regs() implementation. On IBM S/390 systems, a local, unprivileged user could use this flaw to read /proc/[PID]/status files, allowing them to discover the CPU register values of processes. (CVE-2011-0710, Low) * A missing validation check was found in the Linux kernel's mac_partition() implementation, used for supporting file systems created on Mac OS operating systems. A local attacker could use this flaw to cause a denial of service by mounting a disk that contains specially crafted partitions. (CVE-2011-1010, Low) Red Hat would like to thank Ryan Sweat for reporting CVE-2011-1478; Tavis Ormandy for reporting CVE-2010-4346; and Timo Warns for reporting CVE-2011-1010. This update also fixes several bugs. Documentation for these bug fixes will be available shortly from the Technical Notes document linked to in the References section. Users should upgrade to these updated packages, which contain backported patches to correct these issues, and fix the bugs noted in the Technical Notes. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2015-12-01
    plugin id 68252
    published 2013-07-12
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=68252
    title Oracle Linux 5 : kernel (ELSA-2011-0429)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1162-1.NASL
    description Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Alexander Duyck discovered that the Intel Gigabit Ethernet driver did not correctly handle certain configurations. If such a device was configured without VLANs, a remote attacker could crash the system, leading to a denial of service. (CVE-2010-4263) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel's OSS (Open Sound System) driver for Yamaha FM synthesizer chips. A local user can exploit this to cause memory corruption, causing a denial of service or privilege escalation. (CVE-2011-1477) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) It was discovered that the Stream Control Transmission Protocol (SCTP) implementation incorrectly calculated lengths. If the net.sctp.addip_enable variable was turned on, a remote attacker could send specially crafted traffic to crash the system. (CVE-2011-1573) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg reported an error in the old ABI compatibility layer of ARM kernels. A local attacker could exploit this flaw to cause a denial of service or gain root privileges. (CVE-2011-1759) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Timo Warns discovered that the EFI GUID partition table was not correctly parsed. A physically local attacker that could insert mountable devices could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1776) A flaw was found in the b43 driver in the Linux kernel. An attacker could use this flaw to cause a denial of service if the system has an active wireless interface using the b43 driver. (CVE-2011-3359) Yogesh Sharma discovered that CIFS did not correctly handle UNCs that had no prefixpaths. A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-3363) Maynard Johnson discovered that on POWER7, certain speculative events may raise a performance monitor exception. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-4611) Dan Rosenberg discovered flaws in the linux Rose (X.25 PLP) layer used by amateur radio. A local user or a remote user on an X.25 network could exploit these flaws to execute arbitrary code as root. (CVE-2011-4913).
    last seen 2019-02-21
    modified 2019-01-02
    plugin id 55521
    published 2011-07-06
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=55521
    title Ubuntu 10.04 LTS : linux-mvl-dove vulnerabilities (USN-1162-1)
  • NASL family Red Hat Local Security Checks
    NASL id REDHAT-RHSA-2011-0421.NASL
    description Updated kernel packages that fix multiple security issues and several bugs are now available for Red Hat Enterprise Linux 6. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * A flaw was found in the sctp_icmp_proto_unreachable() function in the Linux kernel's Stream Control Transmission Protocol (SCTP) implementation. A remote attacker could use this flaw to cause a denial of service. (CVE-2010-4526, Important) * A missing boundary check was found in the dvb_ca_ioctl() function in the Linux kernel's av7110 module. On systems that use old DVB cards that require the av7110 module, a local, unprivileged user could use this flaw to cause a denial of service or escalate their privileges. (CVE-2011-0521, Important) * A race condition was found in the way the Linux kernel's InfiniBand implementation set up new connections. This could allow a remote user to cause a denial of service. (CVE-2011-0695, Important) * A heap overflow flaw in the iowarrior_write() function could allow a user with access to an IO-Warrior USB device, that supports more than 8 bytes per report, to cause a denial of service or escalate their privileges. (CVE-2010-4656, Moderate) * A flaw was found in the way the Linux Ethernet bridge implementation handled certain IGMP (Internet Group Management Protocol) packets. A local, unprivileged user on a system that has a network interface in an Ethernet bridge could use this flaw to crash that system. (CVE-2011-0716, Moderate) * A NULL pointer dereference flaw was found in the Generic Receive Offload (GRO) functionality in the Linux kernel's networking implementation. If both GRO and promiscuous mode were enabled on an interface in a virtual LAN (VLAN), it could result in a denial of service when a malformed VLAN frame is received on that interface. (CVE-2011-1478, Moderate) * A missing initialization flaw in the Linux kernel could lead to an information leak. (CVE-2010-3296, Low) * A missing security check in the Linux kernel's implementation of the install_special_mapping() function could allow a local, unprivileged user to bypass the mmap_min_addr protection mechanism. (CVE-2010-4346, Low) * A logic error in the orinoco_ioctl_set_auth() function in the Linux kernel's ORiNOCO wireless extensions support implementation could render TKIP countermeasures ineffective when it is enabled, as it enabled the card instead of shutting it down. (CVE-2010-4648, Low) * A missing initialization flaw was found in the ethtool_get_regs() function in the Linux kernel's ethtool IOCTL handler. A local user who has the CAP_NET_ADMIN capability could use this flaw to cause an information leak. (CVE-2010-4655, Low) * An information leak was found in the Linux kernel's task_show_regs() implementation. On IBM S/390 systems, a local, unprivileged user could use this flaw to read /proc/[PID]/status files, allowing them to discover the CPU register values of processes. (CVE-2011-0710, Low) Red Hat would like to thank Jens Kuehnel for reporting CVE-2011-0695; Kees Cook for reporting CVE-2010-4656 and CVE-2010-4655; Dan Rosenberg for reporting CVE-2010-3296; and Tavis Ormandy for reporting CVE-2010-4346. This update also fixes several bugs. Documentation for these bug fixes will be available shortly from the Technical Notes document linked to in the References section. Users should upgrade to these updated packages, which contain backported patches to correct these issues, and fix the bugs noted in the Technical Notes. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-12-20
    plugin id 53328
    published 2011-04-08
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=53328
    title RHEL 6 : kernel (RHSA-2011:0421)
  • NASL family CentOS Local Security Checks
    NASL id CENTOS_RHSA-2011-0429.NASL
    description Updated kernel packages that fix multiple security issues and several bugs are now available for Red Hat Enterprise Linux 5. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * A missing boundary check was found in the dvb_ca_ioctl() function in the Linux kernel's av7110 module. On systems that use old DVB cards that require the av7110 module, a local, unprivileged user could use this flaw to cause a denial of service or escalate their privileges. (CVE-2011-0521, Important) * An inconsistency was found in the interaction between the Linux kernel's method for allocating NFSv4 (Network File System version 4) ACL data and the method by which it was freed. This inconsistency led to a kernel panic which could be triggered by a local, unprivileged user with files owned by said user on an NFSv4 share. (CVE-2011-1090, Moderate) * A NULL pointer dereference flaw was found in the Generic Receive Offload (GRO) functionality in the Linux kernel's networking implementation. If both GRO and promiscuous mode were enabled on an interface in a virtual LAN (VLAN), it could result in a denial of service when a malformed VLAN frame is received on that interface. (CVE-2011-1478, Moderate) * A missing security check in the Linux kernel's implementation of the install_special_mapping() function could allow a local, unprivileged user to bypass the mmap_min_addr protection mechanism. (CVE-2010-4346, Low) * An information leak was found in the Linux kernel's task_show_regs() implementation. On IBM S/390 systems, a local, unprivileged user could use this flaw to read /proc/[PID]/status files, allowing them to discover the CPU register values of processes. (CVE-2011-0710, Low) * A missing validation check was found in the Linux kernel's mac_partition() implementation, used for supporting file systems created on Mac OS operating systems. A local attacker could use this flaw to cause a denial of service by mounting a disk that contains specially crafted partitions. (CVE-2011-1010, Low) Red Hat would like to thank Ryan Sweat for reporting CVE-2011-1478; Tavis Ormandy for reporting CVE-2010-4346; and Timo Warns for reporting CVE-2011-1010. This update also fixes several bugs. Documentation for these bug fixes will be available shortly from the Technical Notes document linked to in the References section. Users should upgrade to these updated packages, which contain backported patches to correct these issues, and fix the bugs noted in the Technical Notes. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-11-10
    plugin id 53432
    published 2011-04-15
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=53432
    title CentOS 5 : kernel (CESA-2011:0429)
  • NASL family Fedora Local Security Checks
    NASL id FEDORA_2011-6541.NASL
    description Update to kernel 2.6.35.13 : http://ftp.kernel.org/pub/linux/kernel/v2.6/longterm/v2.6.35/ChangeLog -2.6.35.13 Plus additional security fixes that will appear in 2.6.35.14 Note that Tenable Network Security has extracted the preceding description block directly from the Fedora security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-07-12
    plugin id 53850
    published 2011-05-10
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=53850
    title Fedora 14 : kernel-2.6.35.13-91.fc14 (2011-6541)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1159-1.NASL
    description Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Alexander Duyck discovered that the Intel Gigabit Ethernet driver did not correctly handle certain configurations. If such a device was configured without VLANs, a remote attacker could crash the system, leading to a denial of service. (CVE-2010-4263) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel's OSS (Open Sound System) driver for Yamaha FM synthesizer chips. A local user can exploit this to cause memory corruption, causing a denial of service or privilege escalation. (CVE-2011-1477) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) It was discovered that the Stream Control Transmission Protocol (SCTP) implementation incorrectly calculated lengths. If the net.sctp.addip_enable variable was turned on, a remote attacker could send specially crafted traffic to crash the system. (CVE-2011-1573) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746) Dan Rosenberg reported an error in the old ABI compatibility layer of ARM kernels. A local attacker could exploit this flaw to cause a denial of service or gain root privileges. (CVE-2011-1759) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Timo Warns discovered that the EFI GUID partition table was not correctly parsed. A physically local attacker that could insert mountable devices could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1776) A flaw was found in the b43 driver in the Linux kernel. An attacker could use this flaw to cause a denial of service if the system has an active wireless interface using the b43 driver. (CVE-2011-3359) Yogesh Sharma discovered that CIFS did not correctly handle UNCs that had no prefixpaths. A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-3363) Maynard Johnson discovered that on POWER7, certain speculative events may raise a performance monitor exception. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-4611) Dan Rosenberg discovered flaws in the linux Rose (X.25 PLP) layer used by amateur radio. A local user or a remote user on an X.25 network could exploit these flaws to execute arbitrary code as root. (CVE-2011-4913).
    last seen 2019-02-21
    modified 2016-05-26
    plugin id 55589
    published 2011-07-14
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=55589
    title Ubuntu 10.10 : linux-mvl-dove vulnerabilities (USN-1159-1)
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2011-0421.NASL
    description From Red Hat Security Advisory 2011:0421 : Updated kernel packages that fix multiple security issues and several bugs are now available for Red Hat Enterprise Linux 6. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * A flaw was found in the sctp_icmp_proto_unreachable() function in the Linux kernel's Stream Control Transmission Protocol (SCTP) implementation. A remote attacker could use this flaw to cause a denial of service. (CVE-2010-4526, Important) * A missing boundary check was found in the dvb_ca_ioctl() function in the Linux kernel's av7110 module. On systems that use old DVB cards that require the av7110 module, a local, unprivileged user could use this flaw to cause a denial of service or escalate their privileges. (CVE-2011-0521, Important) * A race condition was found in the way the Linux kernel's InfiniBand implementation set up new connections. This could allow a remote user to cause a denial of service. (CVE-2011-0695, Important) * A heap overflow flaw in the iowarrior_write() function could allow a user with access to an IO-Warrior USB device, that supports more than 8 bytes per report, to cause a denial of service or escalate their privileges. (CVE-2010-4656, Moderate) * A flaw was found in the way the Linux Ethernet bridge implementation handled certain IGMP (Internet Group Management Protocol) packets. A local, unprivileged user on a system that has a network interface in an Ethernet bridge could use this flaw to crash that system. (CVE-2011-0716, Moderate) * A NULL pointer dereference flaw was found in the Generic Receive Offload (GRO) functionality in the Linux kernel's networking implementation. If both GRO and promiscuous mode were enabled on an interface in a virtual LAN (VLAN), it could result in a denial of service when a malformed VLAN frame is received on that interface. (CVE-2011-1478, Moderate) * A missing initialization flaw in the Linux kernel could lead to an information leak. (CVE-2010-3296, Low) * A missing security check in the Linux kernel's implementation of the install_special_mapping() function could allow a local, unprivileged user to bypass the mmap_min_addr protection mechanism. (CVE-2010-4346, Low) * A logic error in the orinoco_ioctl_set_auth() function in the Linux kernel's ORiNOCO wireless extensions support implementation could render TKIP countermeasures ineffective when it is enabled, as it enabled the card instead of shutting it down. (CVE-2010-4648, Low) * A missing initialization flaw was found in the ethtool_get_regs() function in the Linux kernel's ethtool IOCTL handler. A local user who has the CAP_NET_ADMIN capability could use this flaw to cause an information leak. (CVE-2010-4655, Low) * An information leak was found in the Linux kernel's task_show_regs() implementation. On IBM S/390 systems, a local, unprivileged user could use this flaw to read /proc/[PID]/status files, allowing them to discover the CPU register values of processes. (CVE-2011-0710, Low) Red Hat would like to thank Jens Kuehnel for reporting CVE-2011-0695; Kees Cook for reporting CVE-2010-4656 and CVE-2010-4655; Dan Rosenberg for reporting CVE-2010-3296; and Tavis Ormandy for reporting CVE-2010-4346. This update also fixes several bugs. Documentation for these bug fixes will be available shortly from the Technical Notes document linked to in the References section. Users should upgrade to these updated packages, which contain backported patches to correct these issues, and fix the bugs noted in the Technical Notes. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2015-12-01
    plugin id 68247
    published 2013-07-12
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=68247
    title Oracle Linux 6 : kernel (ELSA-2011-0421)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1141-1.NASL
    description Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Alexander Duyck discovered that the Intel Gigabit Ethernet driver did not correctly handle certain configurations. If such a device was configured without VLANs, a remote attacker could crash the system, leading to a denial of service. (CVE-2010-4263) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel's OSS (Open Sound System) driver for Yamaha FM synthesizer chips. A local user can exploit this to cause memory corruption, causing a denial of service or privilege escalation. (CVE-2011-1477) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) It was discovered that the Stream Control Transmission Protocol (SCTP) implementation incorrectly calculated lengths. If the net.sctp.addip_enable variable was turned on, a remote attacker could send specially crafted traffic to crash the system. (CVE-2011-1573) A flaw was found in the b43 driver in the Linux kernel. An attacker could use this flaw to cause a denial of service if the system has an active wireless interface using the b43 driver. (CVE-2011-3359) Maynard Johnson discovered that on POWER7, certain speculative events may raise a performance monitor exception. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-4611) Dan Rosenberg discovered flaws in the linux Rose (X.25 PLP) layer used by amateur radio. A local user or a remote user on an X.25 network could exploit these flaws to execute arbitrary code as root. (CVE-2011-4913). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2019-01-02
    plugin id 55104
    published 2011-06-13
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=55104
    title Ubuntu 10.04 LTS : linux, linux-ec2 vulnerabilities (USN-1141-1)
  • NASL family VMware ESX Local Security Checks
    NASL id VMWARE_VMSA-2011-0012.NASL
    description a. ESX third-party update for Service Console kernel This update takes the console OS kernel package to kernel-2.6.18-238.9.1 which resolves multiple security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2010-1083, CVE-2010-2492, CVE-2010-2798, CVE-2010-2938, CVE-2010-2942, CVE-2010-2943, CVE-2010-3015, CVE-2010-3066, CVE-2010-3067, CVE-2010-3078, CVE-2010-3086, CVE-2010-3296, CVE-2010-3432, CVE-2010-3442, CVE-2010-3477, CVE-2010-3699, CVE-2010-3858, CVE-2010-3859, CVE-2010-3865, CVE-2010-3876, CVE-2010-3877, CVE-2010-3880, CVE-2010-3904, CVE-2010-4072, CVE-2010-4073, CVE-2010-4075, CVE-2010-4080, CVE-2010-4081, CVE-2010-4083, CVE-2010-4157, CVE-2010-4158, CVE-2010-4161, CVE-2010-4238, CVE-2010-4242, CVE-2010-4243, CVE-2010-4247, CVE-2010-4248, CVE-2010-4249, CVE-2010-4251, CVE-2010-4255, CVE-2010-4263, CVE-2010-4343, CVE-2010-4346, CVE-2010-4526, CVE-2010-4655, CVE-2011-0521, CVE-2011-0710, CVE-2011-1010, CVE-2011-1090 and CVE-2011-1478 to these issues. b. ESX third-party update for Service Console krb5 RPMs This patch updates the krb5-libs and krb5-workstation RPMs of the console OS to version 1.6.1-55.el5_6.1, which resolves multiple security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2010-1323, CVE-2011-0281, and CVE-2011-0282 to these issues. c. ESXi and ESX update to third-party component glibc The glibc third-party library is updated to resolve multiple security issues. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2010-0296, CVE-2011-0536, CVE-2011-1071, CVE-2011-1095, CVE-2011-1658, and CVE-2011-1659 to these issues. d. ESX update to third-party drivers mptsas, mpt2sas, and mptspi The mptsas, mpt2sas, and mptspi drivers are updated which addresses multiple security issues in the mpt2sas driver. The Common Vulnerabilities and Exposures project (cve.mitre.org) has assigned the names CVE-2011-1494 and CVE-2011-1495 to these issues.
    last seen 2019-02-21
    modified 2018-09-06
    plugin id 56508
    published 2011-10-14
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=56508
    title VMSA-2011-0012 : VMware ESXi and ESX updates to third-party libraries and ESX Service Console
  • NASL family Scientific Linux Local Security Checks
    NASL id SL_20110412_KERNEL_ON_SL5_X.NASL
    description This update fixes the following security issues : - A missing boundary check was found in the dvb_ca_ioctl() function in the Linux kernel's av7110 module. On systems that use old DVB cards that require the av7110 module, a local, unprivileged user could use this flaw to cause a denial of service or escalate their privileges. (CVE-2011-0521, Important) - An inconsistency was found in the interaction between the Linux kernel's method for allocating NFSv4 (Network File System version 4) ACL data and the method by which it was freed. This inconsistency led to a kernel panic which could be triggered by a local, unprivileged user with files owned by said user on an NFSv4 share. (CVE-2011-1090, Moderate) - A NULL pointer dereference flaw was found in the Generic Receive Offload (GRO) functionality in the Linux kernel's networking implementation. If both GRO and promiscuous mode were enabled on an interface in a virtual LAN (VLAN), it could result in a denial of service when a malformed VLAN frame is received on that interface. (CVE-2011-1478, Moderate) - A missing security check in the Linux kernel's implementation of the install_special_mapping() function could allow a local, unprivileged user to bypass the mmap_min_addr protection mechanism. (CVE-2010-4346, Low) - An information leak was found in the Linux kernel's task_show_regs() implementation. On IBM S/390 systems, a local, unprivileged user could use this flaw to read /proc/[PID]/status files, allowing them to discover the CPU register values of processes. (CVE-2011-0710, Low) - A missing validation check was found in the Linux kernel's mac_partition() implementation, used for supporting file systems created on Mac OS operating systems. A local attacker could use this flaw to cause a denial of service by mounting a disk that contains specially crafted partitions. (CVE-2011-1010, Low) This update also fixes several bugs. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-12-31
    plugin id 61018
    published 2012-08-01
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=61018
    title Scientific Linux Security Update : kernel on SL5.x i386/x86_64
  • NASL family SuSE Local Security Checks
    NASL id SUSE_11_KERNEL-110414.NASL
    description The SUSE Linux Enterprise 11 Service Pack 1 kernel was updated to 2.6.32.36 and fixes various bugs and security issues. The following security issues were fixed : - When parsing the FAC_NATIONAL_DIGIS facilities field, it was possible for a remote host to provide more digipeaters than expected, resulting in heap corruption. (CVE-2011-1493) - (no CVEs assigned yet): In the rose networking stack, when parsing the FAC_CCITT_DEST_NSAP and FAC_CCITT_SRC_NSAP facilities fields, a remote host could provide a length of less than 10, resulting in an underflow in a memcpy size, causing a kernel panic due to massive heap corruption. A length of greater than 20 results in a stack overflow of the callsign array - The code for evaluating OSF partitions (in fs/partitions/osf.c) contained a bug that leaks data from kernel heap memory to userspace for certain corrupted OSF partitions. (CVE-2011-1163) - A bug in the order of dccp_rcv_state_process() was fixed that still permitted reception even after closing the socket. A Reset after close thus causes a NULL pointer dereference by not preventing operations on an already torn-down socket. (CVE-2011-1093) - A signedness issue in drm_modeset_ctl() could be used by local attackers with access to the drm devices to potentially crash the kernel or escalate privileges. (CVE-2011-1013) - The epoll subsystem in Linux did not prevent users from creating circular epoll file structures, potentially leading to a denial of service (kernel deadlock). (CVE-2011-1082) - Multiple buffer overflows in the caiaq Native Instruments USB audio functionality in the Linux kernel might have allowed attackers to cause a denial of service or possibly have unspecified other impact via a long USB device name, related to (1) the snd_usb_caiaq_audio_init function in sound/usb/caiaq/audio.c and (2) the snd_usb_caiaq_midi_init function in sound/usb/caiaq/midi.c. (CVE-2011-0712) - Local attackers could send signals to their programs that looked like coming from the kernel, potentially gaining privileges in the context of setuid programs. (CVE-2011-1182) - An issue in the core GRO code where an skb belonging to an unknown VLAN is reused could result in a NULL pointer dereference. (CVE-2011-1478) - Specially crafted requests may be written to /dev/sequencer resulting in an underflow when calculating a size for a copy_from_user() operation in the driver for MIDI interfaces. On x86, this just returns an error, but it could have caused memory corruption on other architectures. Other malformed requests could have resulted in the use of uninitialized variables. (CVE-2011-1476) - Due to a failure to validate user-supplied indexes in the driver for Yamaha YM3812 and OPL-3 chips, a specially crafted ioctl request could have been sent to /dev/sequencer, resulting in reading and writing beyond the bounds of heap buffers, and potentially allowing privilege escalation. (CVE-2011-1477) - A information leak in the XFS geometry calls could be used by local attackers to gain access to kernel information. (CVE-2011-0191) - A page allocator issue in NFS v4 ACL handling that could lead to a denial of service (crash) was fixed. (CVE-2011-1090) - net/ipv4/inet_diag.c in the Linux kernel did not properly audit INET_DIAG bytecode, which allowed local users to cause a denial of service (kernel infinite loop) via crafted INET_DIAG_REQ_BYTECODE instructions in a netlink message that contains multiple attribute elements, as demonstrated by INET_DIAG_BC_JMP instructions. (CVE-2010-3880) - Fixed a buffer size issue in 'usb iowarrior' module, where a malicious device could overflow a kernel buffer. (CVE-2010-4656) - The dvb_ca_ioctl function in drivers/media/dvb/ttpci/av7110_ca.c in the Linux kernel did not check the sign of a certain integer field, which allowed local users to cause a denial of service (memory corruption) or possibly have unspecified other impact via a negative value. (CVE-2011-0521) - In the IrDA module, length fields provided by a peer for names and attributes may be longer than the destination array sizes and were not checked, this allowed local attackers (close to the irda port) to potentially corrupt memory. (CVE-2011-1180) - A system out of memory condition (denial of service) could be triggered with a large socket backlog, exploitable by local users. This has been addressed by backlog limiting. (CVE-2010-4251) - The Radeon GPU drivers in the Linux kernel did not properly validate data related to the AA resolve registers, which allowed local users to write to arbitrary memory locations associated with (1) Video RAM (aka VRAM) or (2) the Graphics Translation Table (GTT) via crafted values. (CVE-2011-1016) - Boundschecking was missing in AARESOLVE_OFFSET, which allowed local attackers to overwrite kernel memory and so escalate privileges or crash the kernel. (CVE-2011-1573)
    last seen 2019-02-21
    modified 2013-10-25
    plugin id 53570
    published 2011-04-28
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=53570
    title SuSE 11.1 Security Update : Linux kernel (SAT Patch Numbers 4384 / 4386)
  • NASL family Red Hat Local Security Checks
    NASL id REDHAT-RHSA-2011-0429.NASL
    description Updated kernel packages that fix multiple security issues and several bugs are now available for Red Hat Enterprise Linux 5. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. The kernel packages contain the Linux kernel, the core of any Linux operating system. This update fixes the following security issues : * A missing boundary check was found in the dvb_ca_ioctl() function in the Linux kernel's av7110 module. On systems that use old DVB cards that require the av7110 module, a local, unprivileged user could use this flaw to cause a denial of service or escalate their privileges. (CVE-2011-0521, Important) * An inconsistency was found in the interaction between the Linux kernel's method for allocating NFSv4 (Network File System version 4) ACL data and the method by which it was freed. This inconsistency led to a kernel panic which could be triggered by a local, unprivileged user with files owned by said user on an NFSv4 share. (CVE-2011-1090, Moderate) * A NULL pointer dereference flaw was found in the Generic Receive Offload (GRO) functionality in the Linux kernel's networking implementation. If both GRO and promiscuous mode were enabled on an interface in a virtual LAN (VLAN), it could result in a denial of service when a malformed VLAN frame is received on that interface. (CVE-2011-1478, Moderate) * A missing security check in the Linux kernel's implementation of the install_special_mapping() function could allow a local, unprivileged user to bypass the mmap_min_addr protection mechanism. (CVE-2010-4346, Low) * An information leak was found in the Linux kernel's task_show_regs() implementation. On IBM S/390 systems, a local, unprivileged user could use this flaw to read /proc/[PID]/status files, allowing them to discover the CPU register values of processes. (CVE-2011-0710, Low) * A missing validation check was found in the Linux kernel's mac_partition() implementation, used for supporting file systems created on Mac OS operating systems. A local attacker could use this flaw to cause a denial of service by mounting a disk that contains specially crafted partitions. (CVE-2011-1010, Low) Red Hat would like to thank Ryan Sweat for reporting CVE-2011-1478; Tavis Ormandy for reporting CVE-2010-4346; and Timo Warns for reporting CVE-2011-1010. This update also fixes several bugs. Documentation for these bug fixes will be available shortly from the Technical Notes document linked to in the References section. Users should upgrade to these updated packages, which contain backported patches to correct these issues, and fix the bugs noted in the Technical Notes. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-12-20
    plugin id 53399
    published 2011-04-13
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=53399
    title RHEL 5 : kernel (RHSA-2011:0429)
  • NASL family SuSE Local Security Checks
    NASL id SUSE_11_KERNEL-110415.NASL
    description The SUSE Linux Enterprise 11 Service Pack 1 kernel was updated to 2.6.32.36 and fixes various bugs and security issues. The following security issues were fixed : - When parsing the FAC_NATIONAL_DIGIS facilities field, it was possible for a remote host to provide more digipeaters than expected, resulting in heap corruption. (CVE-2011-1493) - (no CVEs assigned yet): In the rose networking stack, when parsing the FAC_CCITT_DEST_NSAP and FAC_CCITT_SRC_NSAP facilities fields, a remote host could provide a length of less than 10, resulting in an underflow in a memcpy size, causing a kernel panic due to massive heap corruption. A length of greater than 20 results in a stack overflow of the callsign array - The code for evaluating OSF partitions (in fs/partitions/osf.c) contained a bug that leaks data from kernel heap memory to userspace for certain corrupted OSF partitions. (CVE-2011-1163) - A bug in the order of dccp_rcv_state_process() was fixed that still permitted reception even after closing the socket. A Reset after close thus causes a NULL pointer dereference by not preventing operations on an already torn-down socket. (CVE-2011-1093) - A signedness issue in drm_modeset_ctl() could be used by local attackers with access to the drm devices to potentially crash the kernel or escalate privileges. (CVE-2011-1013) - The epoll subsystem in Linux did not prevent users from creating circular epoll file structures, potentially leading to a denial of service (kernel deadlock). (CVE-2011-1082) - Multiple buffer overflows in the caiaq Native Instruments USB audio functionality in the Linux kernel might have allowed attackers to cause a denial of service or possibly have unspecified other impact via a long USB device name, related to (1) the snd_usb_caiaq_audio_init function in sound/usb/caiaq/audio.c and (2) the snd_usb_caiaq_midi_init function in sound/usb/caiaq/midi.c. (CVE-2011-0712) - Local attackers could send signals to their programs that looked like coming from the kernel, potentially gaining privileges in the context of setuid programs. (CVE-2011-1182) - An issue in the core GRO code where an skb belonging to an unknown VLAN is reused could result in a NULL pointer dereference. (CVE-2011-1478) - Specially crafted requests may be written to /dev/sequencer resulting in an underflow when calculating a size for a copy_from_user() operation in the driver for MIDI interfaces. On x86, this just returns an error, but it could have caused memory corruption on other architectures. Other malformed requests could have resulted in the use of uninitialized variables. (CVE-2011-1476) - Due to a failure to validate user-supplied indexes in the driver for Yamaha YM3812 and OPL-3 chips, a specially crafted ioctl request could have been sent to /dev/sequencer, resulting in reading and writing beyond the bounds of heap buffers, and potentially allowing privilege escalation. (CVE-2011-1477) - A information leak in the XFS geometry calls could be used by local attackers to gain access to kernel information. (CVE-2011-0191) - A page allocator issue in NFS v4 ACL handling that could lead to a denial of service (crash) was fixed. (CVE-2011-1090) - net/ipv4/inet_diag.c in the Linux kernel did not properly audit INET_DIAG bytecode, which allowed local users to cause a denial of service (kernel infinite loop) via crafted INET_DIAG_REQ_BYTECODE instructions in a netlink message that contains multiple attribute elements, as demonstrated by INET_DIAG_BC_JMP instructions. (CVE-2010-3880) - Fixed a buffer size issue in 'usb iowarrior' module, where a malicious device could overflow a kernel buffer. (CVE-2010-4656) - The dvb_ca_ioctl function in drivers/media/dvb/ttpci/av7110_ca.c in the Linux kernel did not check the sign of a certain integer field, which allowed local users to cause a denial of service (memory corruption) or possibly have unspecified other impact via a negative value. (CVE-2011-0521) - In the IrDA module, length fields provided by a peer for names and attributes may be longer than the destination array sizes and were not checked, this allowed local attackers (close to the irda port) to potentially corrupt memory. (CVE-2011-1180) - A system out of memory condition (denial of service) could be triggered with a large socket backlog, exploitable by local users. This has been addressed by backlog limiting. (CVE-2010-4251) - The Radeon GPU drivers in the Linux kernel did not properly validate data related to the AA resolve registers, which allowed local users to write to arbitrary memory locations associated with (1) Video RAM (aka VRAM) or (2) the Graphics Translation Table (GTT) via crafted values. (CVE-2011-1016) - Boundschecking was missing in AARESOLVE_OFFSET, which allowed local attackers to overwrite kernel memory and so escalate privileges or crash the kernel. (CVE-2011-1573)
    last seen 2019-02-21
    modified 2013-10-25
    plugin id 53571
    published 2011-04-28
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=53571
    title SuSE 11.1 Security Update : Linux kernel (SAT Patch Number 4376)
  • NASL family Oracle Linux Local Security Checks
    NASL id ORACLELINUX_ELSA-2011-2014.NASL
    description Description of changes: [2.6.32-100.28.11.el6] - fs/partitions: Validate map_count in Mac partition tables {CVE-2011-1010} - nfs4: Ensure that ACL pages sent over NFS were not allocated from the slab (v3) {CVE-2011-1090} [2.6.32-100.28.10.el6] - Use cciss for some Smart Array controller for OL5 [orabug 11899706] - CVEs from RHSA-2011-0421 - install_special_mapping skips security_file_mmap check {CVE-2010-4346} - orinoco: fix TKIP countermeasure behaviour {CVE-2010-4648} - net: clear heap allocation for ethtool_get_regs() {CVE-2010-4655} - usb: iowarrior: don't trust report_size for buffer size {CVE-2010-4656} - [media] [v3,media] av7110: check for negative array offset {CVE-2011-0521} - RDMA/cma: Fix crash in request handlers {CVE-2011-0695} - IB/cm: Bump reference count on cm_id before invoking callback {CVE-2011-0695} - gro: reset skb_iif on reuse {CVE-2011-1478}
    last seen 2019-02-21
    modified 2015-12-01
    plugin id 68415
    published 2013-07-12
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=68415
    title Oracle Linux 5 / 6 : Unbreakable Enterprise kernel (ELSA-2011-2014)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1256-1.NASL
    description It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) It was discovered that the security fix for CVE-2010-4250 introduced a regression. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1479) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) It was discovered that the Stream Control Transmission Protocol (SCTP) implementation incorrectly calculated lengths. If the net.sctp.addip_enable variable was turned on, a remote attacker could send specially crafted traffic to crash the system. (CVE-2011-1573) Ryan Sweat discovered that the kernel incorrectly handled certain VLAN packets. On some systems, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1576) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Phil Oester discovered that the network bonding system did not correctly handle large queues. On some systems, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1581) It was discovered that CIFS incorrectly handled authentication. When a user had a CIFS share mounted that required authentication, a local user could mount the same share without knowing the correct password. (CVE-2011-1585) It was discovered that the GRE protocol incorrectly handled netns initialization. A remote attacker could send a packet while the ip_gre module was loading, and crash the system, leading to a denial of service. (CVE-2011-1767) It was discovered that the IP/IP protocol incorrectly handled netns initialization. A remote attacker could send a packet while the ipip module was loading, and crash the system, leading to a denial of service. (CVE-2011-1768) Ben Greear discovered that CIFS did not correctly handle direct I/O. A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-1771) Timo Warns discovered that the EFI GUID partition table was not correctly parsed. A physically local attacker that could insert mountable devices could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1776) Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833) Ben Hutchings reported a flaw in the kernel's handling of corrupt LDM partitions. A local user could exploit this to cause a denial of service or escalate privileges. (CVE-2011-2182) Dan Rosenberg discovered that the IPv4 diagnostic routines did not correctly validate certain requests. A local attacker could exploit this to consume CPU resources, leading to a denial of service. (CVE-2011-2213) It was discovered that an mmap() call with the MAP_PRIVATE flag on '/dev/zero' was incorrectly handled. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2479) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could exploit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) Sami Liedes discovered that ext4 did not correctly handle missing root inodes. A local attacker could trigger the mount of a specially crafted filesystem to cause the system to crash, leading to a denial of service. (CVE-2011-2493) Robert Swiecki discovered that mapping extensions were incorrectly handled. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2496) Dan Rosenberg discovered that the Bluetooth stack incorrectly handled certain L2CAP requests. If a system was using Bluetooth, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-2497) Ben Pfaff discovered that Classless Queuing Disciplines (qdiscs) were being incorrectly handled. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2525) It was discovered that GFS2 did not correctly check block sizes. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2689) It was discovered that the EXT4 filesystem contained multiple off-by-one flaws. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2695) Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. (CVE-2011-2699) Mauro Carvalho Chehab discovered that the si4713 radio driver did not correctly check the length of memory copies. If this hardware was available, a local attacker could exploit this to crash the system or gain root privileges. (CVE-2011-2700) Herbert Xu discovered that certain fields were incorrectly handled when Generic Receive Offload (CVE-2011-2723) The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918) Time Warns discovered that long symlinks were incorrectly handled on Be filesystems. A local attacker could exploit this with a malformed Be filesystem and crash the system, leading to a denial of service. (CVE-2011-2928) Qianfeng Zhang discovered that the bridge networking interface incorrectly handled certain network packets. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2942) Dan Kaminsky discovered that the kernel incorrectly handled random sequence number generation. An attacker could use this flaw to possibly predict sequence numbers and inject packets. (CVE-2011-3188) Darren Lavender discovered that the CIFS client incorrectly handled certain large values. A remote attacker with a malicious server could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2011-3191) Yasuaki Ishimatsu discovered a flaw in the kernel's clock implementation. A local unprivileged attacker could exploit this causing a denial of service. (CVE-2011-3209) Yogesh Sharma discovered that CIFS did not correctly handle UNCs that had no prefixpaths. A local attacker with access to a CIFS partition could exploit this to crash the system, leading to a denial of service. (CVE-2011-3363) A flaw was discovered in the Linux kernel's AppArmor security interface when invalid information was written to it. An unprivileged local user could use this to cause a denial of service on the system. (CVE-2011-3619) A flaw was found in the Linux kernel's /proc/*/*map* interface. A local, unprivileged user could exploit this flaw to cause a denial of service. (CVE-2011-3637) Scot Doyle discovered that the bridge networking interface incorrectly handled certain network packets. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-4087) A bug was found in the way headroom check was performed in udp6_ufo_fragment() function. A remote attacker could use this flaw to crash the system. (CVE-2011-4326) Ben Hutchings discovered several flaws in the Linux Rose (X.25 PLP) layer. A local user or a remote user on an X.25 network could exploit these flaws to execute arbitrary code as root. (CVE-2011-4914). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 56768
    published 2011-11-10
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=56768
    title Ubuntu 10.04 LTS : linux-lts-backport-natty vulnerabilities (USN-1256-1)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1204-1.NASL
    description Dan Rosenberg discovered that the Linux kernel TIPC implementation contained multiple integer signedness errors. A local attacker could exploit this to gain root privileges. (CVE-2010-3859) Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077) Dan Rosenberg discovered that the socket filters did not correctly initialize structure memory. A local attacker could create malicious filters to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4158) Dan Rosenberg discovered that the Linux kernel L2TP implementation contained multiple integer signedness errors. A local attacker could exploit this to to crash the kernel, or possibly gain root privileges. (CVE-2010-4160) Dan Rosenberg discovered that certain iovec operations did not calculate page counts correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4162) Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668) Dan Rosenberg discovered that the RDS protocol did not correctly check ioctl arguments. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4175) Alan Cox discovered that the HCI UART driver did not correctly check if a write operation was available. If the mmap_min-addr sysctl was changed from the Ubuntu default to a value of 0, a local attacker could exploit this flaw to gain root privileges. (CVE-2010-4242) Brad Spengler discovered that the kernel did not correctly account for userspace memory allocations during exec() calls. A local attacker could exploit this to consume all system memory, leading to a denial of service. (CVE-2010-4243) Alex Shi and Eric Dumazet discovered that the network stack did not correctly handle packet backlogs. A remote attacker could exploit this by sending a large amount of network traffic to cause the system to run out of memory, leading to a denial of service. (CVE-2010-4251, CVE-2010-4805) It was discovered that the ICMP stack did not correctly handle certain unreachable messages. If a remote attacker were able to acquire a socket lock, they could send specially crafted traffic that would crash the system, leading to a denial of service. (CVE-2010-4526) Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) It was discovered that the /proc filesystem did not correctly handle permission changes when programs executed. A local attacker could hold open files to examine details about programs running with higher privileges, potentially increasing the chances of exploiting additional vulnerabilities. (CVE-2011-1020) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that the X.25 Rose network stack did not correctly handle certain fields. If a system was running with Rose enabled, a remote attacker could send specially crafted traffic to gain root privileges. (CVE-2011-1493) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598) Dan Rosenberg discovered that the DCCP stack did not correctly handle certain packet structures. A remote attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1770) Vasiliy Kulikov and Dan Rosenberg discovered that ecryptfs did not correctly check the origin of mount points. A local attacker could exploit this to trick the system into unmounting arbitrary mount points, leading to a denial of service. (CVE-2011-1833) Vasiliy Kulikov discovered that taskstats listeners were not correctly handled. A local attacker could expoit this to exhaust memory and CPU resources, leading to a denial of service. (CVE-2011-2484) It was discovered that Bluetooth l2cap and rfcomm did not correctly initialize structures. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2011-2492) Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. (CVE-2011-2699) The performance counter subsystem did not correctly handle certain counters. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-2918)
    last seen 2019-02-21
    modified 2016-01-14
    plugin id 56192
    published 2011-09-14
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=56192
    title USN-1204-1 : linux-fsl-imx51 vulnerabilities
  • NASL family SuSE Local Security Checks
    NASL id SUSE_11_3_KERNEL-120104.NASL
    description The openSUSE 11.3 kernel was updated to fix various bugs and security issues. Following security issues have been fixed: CVE-2011-4604: If root does read() on a specific socket, it's possible to corrupt (kernel) memory over network, with an ICMP packet, if the B.A.T.M.A.N. mesh protocol is used. CVE-2011-2525: A flaw allowed the tc_fill_qdisc() function in the Linux kernels packet scheduler API implementation to be called on built-in qdisc structures. A local, unprivileged user could have used this flaw to trigger a NULL pointer dereference, resulting in a denial of service. CVE-2011-2699: Fernando Gont discovered that the IPv6 stack used predictable fragment identification numbers. A remote attacker could exploit this to exhaust network resources, leading to a denial of service. CVE-2011-2213: The inet_diag_bc_audit function in net/ipv4/inet_diag.c in the Linux kernel did not properly audit INET_DIAG bytecode, which allowed local users to cause a denial of service (kernel infinite loop) via crafted INET_DIAG_REQ_BYTECODE instructions in a netlink message, as demonstrated by an INET_DIAG_BC_JMP instruction with a zero yes value, a different vulnerability than CVE-2010-3880. CVE-2011-1576: The Generic Receive Offload (GRO) implementation in the Linux kernel allowed remote attackers to cause a denial of service via crafted VLAN packets that are processed by the napi_reuse_skb function, leading to (1) a memory leak or (2) memory corruption, a different vulnerability than CVE-2011-1478. CVE-2011-2534: Buffer overflow in the clusterip_proc_write function in net/ipv4/netfilter/ipt_CLUSTERIP.c in the Linux kernel might have allowed local users to cause a denial of service or have unspecified other impact via a crafted write operation, related to string data that lacks a terminating '\0' character. CVE-2011-1770: Integer underflow in the dccp_parse_options function (net/dccp/options.c) in the Linux kernel allowed remote attackers to cause a denial of service via a Datagram Congestion Control Protocol (DCCP) packet with an invalid feature options length, which triggered a buffer over-read. CVE-2011-2723: The skb_gro_header_slow function in include/linux/netdevice.h in the Linux kernel, when Generic Receive Offload (GRO) is enabled, reset certain fields in incorrect situations, which allowed remote attackers to cause a denial of service (system crash) via crafted network traffic. CVE-2011-2898: A kernel information leak in the AF_PACKET protocol was fixed which might have allowed local attackers to read kernel memory. CVE-2011-2203: A NULL ptr dereference on mounting corrupt hfs filesystems was fixed which could be used by local attackers to crash the kernel. CVE-2011-4081: Using the crypto interface a local user could Oops the kernel by writing to a AF_ALG socket.
    last seen 2019-02-21
    modified 2018-11-10
    plugin id 75557
    published 2014-06-13
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=75557
    title openSUSE Security Update : kernel (openSUSE-SU-2012:0206-1)
  • NASL family SuSE Local Security Checks
    NASL id SUSE_11_4_KERNEL-110426.NASL
    description The openSUSE 11.4 kernel was updated to 2.6.37.6 fixing lots of bugs and security issues. Following security issues have been fixed: CVE-2011-1493: In the rose networking stack, when parsing the FAC_NATIONAL_DIGIS facilities field, it was possible for a remote host to provide more digipeaters than expected, resulting in heap corruption. Check against ROSE_MAX_DIGIS to prevent overflows, and abort facilities parsing on failure. CVE-2011-1182: Local attackers could send signals to their programs that looked like coming from the kernel, potentially gaining privileges in the context of setuid programs. CVE-2011-1478: An issue in the core GRO code where an skb belonging to an unknown VLAN is reused could result in a NULL pointer dereference. CVE-2011-1476: Specially crafted requests may be written to /dev/sequencer resulting in an underflow when calculating a size for a copy_from_user() operation in the driver for MIDI interfaces. On x86, this just returns an error, but it could have caused memory corruption on other architectures. Other malformed requests could have resulted in the use of uninitialized variables. CVE-2011-1477: Due to a failure to validate user-supplied indexes in the driver for Yamaha YM3812 and OPL-3 chips, a specially crafted ioctl request could have been sent to /dev/sequencer, resulting in reading and writing beyond the bounds of heap buffers, and potentially allowing privilege escalation. CVE-2011-0191: A information leak in the XFS geometry calls could be used by local attackers to gain access to kernel information. CVE-2011-0711: A stack memory information leak in the xfs FSGEOMETRY_V1 ioctl was fixed. CVE-2011-0521: The dvb_ca_ioctl function in drivers/media/dvb/ttpci/av7110_ca.c in the Linux kernel did not check the sign of a certain integer field, which allowed local users to cause a denial of service (memory corruption) or possibly have unspecified other impact via a negative value. CVE-2011-1010: The code for evaluating Mac partitions (in fs/partitions/mac.c) contained a bug that could crash the kernel for certain corrupted Mac partitions. CVE-2011-0712: Multiple buffer overflows in the caiaq Native Instruments USB audio functionality in the Linux kernel might have allowed attackers to cause a denial of service or possibly have unspecified other impact via a long USB device name, related to (1) the snd_usb_caiaq_audio_init function in sound/usb/caiaq/audio.c and (2) the snd_usb_caiaq_midi_init function in sound/usb/caiaq/midi.c. CVE-2011-1013: A signedness issue in the drm ioctl handling could be used by local attackers to potentially overflow kernel buffers and execute code. CVE-2011-1082: The epoll subsystem in Linux did not prevent users from creating circular epoll file structures, potentially leading to a denial of service (kernel deadlock). CVE-2010-4650: A kernel buffer overflow in the cuse server module was fixed, which might have allowed local privilege escalation. However only CUSE servers could exploit it and /dev/cuse is normally restricted to root. CVE-2011-1093: A bug was fixed in the DCCP networking stack where the order of dccp_rcv_state_process() still permitted reception even after closing the socket. A Reset after close thus causes a NULL pointer dereference by not preventing operations on an already torn-down socket. CVE-2011-1163: The code for evaluating OSF partitions (in fs/partitions/osf.c) contained a bug that leaks data from kernel heap memory to userspace for certain corrupted OSF partitions. CVE-2011-1012: The code for evaluating LDM partitions (in fs/partitions/ldm.c) contained a bug that could crash the kernel for certain corrupted LDM partitions. CVE-2011-1581: Doing bridging with devices with more than 16 receive queues could crash the kernel. CVE-2011-1160: Kernel information via the TPM devices could by used by local attackers to read kernel memory. CVE-2011-1577: The Linux kernel automatically evaluated partition tables of storage devices. The code for evaluating EFI GUID partitions (in fs/partitions/efi.c) contained a bug that causes a kernel oops on certain corrupted GUID partition tables, which might be used by local attackers to crash the kernel or potentially execute code. CVE-2011-1180: In the IrDA module, length fields provided by a peer for names and attributes may be longer than the destination array sizes and were not checked, this allowed local attackers (close to the irda port) to potentially corrupt memory. CVE-2011-1016: The Radeon GPU drivers in the Linux kernel did not properly validate data related to the AA resolve registers, which allowed local users to write to arbitrary memory locations associated with (1) Video RAM (aka VRAM) or (2) the Graphics Translation Table (GTT) via crafted values.
    last seen 2019-02-21
    modified 2018-11-10
    plugin id 75879
    published 2014-06-13
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=75879
    title openSUSE Security Update : kernel (openSUSE-SU-2011:0416-1)
  • NASL family Debian Local Security Checks
    NASL id DEBIAN_DSA-2240.NASL
    description Several vulnerabilities have been discovered in the Linux kernel that may lead to a denial of service or privilege escalation. The Common Vulnerabilities and Exposures project identifies the following problems : - CVE-2010-3875 Vasiliy Kulikov discovered an issue in the Linux implementation of the Amateur Radio AX.25 Level 2 protocol. Local users may obtain access to sensitive kernel memory. - CVE-2011-0695 Jens Kuehnel reported an issue in the InfiniBand stack. Remote attackers can exploit a race condition to cause a denial of service (kernel panic). - CVE-2011-0711 Dan Rosenberg reported an issue in the XFS filesystem. Local users may obtain access to sensitive kernel memory. - CVE-2011-0726 Kees Cook reported an issue in the /proc/pid/stat implementation. Local users could learn the text location of a process, defeating protections provided by address space layout randomization (ASLR). - CVE-2011-1016 Marek Olsak discovered an issue in the driver for ATI/AMD Radeon video chips. Local users could pass arbitrary values to video memory and the graphics translation table, resulting in denial of service or escalated privileges. On default Debian installations, this is exploitable only by members of the 'video' group. - CVE-2011-1078 Vasiliy Kulikov discovered an issue in the Bluetooth subsystem. Local users can obtain access to sensitive kernel memory. - CVE-2011-1079 Vasiliy Kulikov discovered an issue in the Bluetooth subsystem. Local users with the CAP_NET_ADMIN capability can cause a denial of service (kernel Oops). - CVE-2011-1080 Vasiliy Kulikov discovered an issue in the Netfilter subsystem. Local users can obtain access to sensitive kernel memory. - CVE-2011-1090 Neil Horman discovered a memory leak in the setacl() call on NFSv4 filesystems. Local users can exploit this to cause a denial of service (Oops). - CVE-2011-1160 Peter Huewe reported an issue in the Linux kernel's support for TPM security chips. Local users with permission to open the device can gain access to sensitive kernel memory. - CVE-2011-1163 Timo Warns reported an issue in the kernel support for Alpha OSF format disk partitions. Users with physical access can gain access to sensitive kernel memory by adding a storage device with a specially crafted OSF partition. - CVE-2011-1170 Vasiliy Kulikov reported an issue in the Netfilter ARP table implementation. Local users with the CAP_NET_ADMIN capability can gain access to sensitive kernel memory. - CVE-2011-1171 Vasiliy Kulikov reported an issue in the Netfilter IP table implementation. Local users with the CAP_NET_ADMIN capability can gain access to sensitive kernel memory. - CVE-2011-1172 Vasiliy Kulikov reported an issue in the Netfilter IPv6 table implementation. Local users with the CAP_NET_ADMIN capability can gain access to sensitive kernel memory. - CVE-2011-1173 Vasiliy Kulikov reported an issue in the Acorn Econet protocol implementation. Local users can obtain access to sensitive kernel memory on systems that use this rare hardware. - CVE-2011-1180 Dan Rosenberg reported a buffer overflow in the Information Access Service of the IrDA protocol, used for Infrared devices. Remote attackers within IR device range can cause a denial of service or possibly gain elevated privileges. - CVE-2011-1182 Julien Tinnes reported an issue in the rt_sigqueueinfo interface. Local users can generate signals with falsified source pid and uid information. - CVE-2011-1476 Dan Rosenberg reported issues in the Open Sound System MIDI interface that allow local users to cause a denial of service. This issue does not affect official Debian Linux image packages as they no longer provide support for OSS. However, custom kernels built from Debian's linux-source-2.6.32 may have enabled this configuration and would therefore be vulnerable. - CVE-2011-1477 Dan Rosenberg reported issues in the Open Sound System driver for cards that include a Yamaha FM synthesizer chip. Local users can cause memory corruption resulting in a denial of service. This issue does not affect official Debian Linux image packages as they no longer provide support for OSS. However, custom kernels built from Debian's linux-source-2.6.32 may have enabled this configuration and would therefore be vulnerable. - CVE-2011-1478 Ryan Sweat reported an issue in the Generic Receive Offload (GRO) support in the Linux networking subsystem. If an interface has GRO enabled and is running in promiscuous mode, remote users can cause a denial of service (NULL pointer dereference) by sending packets on an unknown VLAN. - CVE-2011-1493 Dan Rosenburg reported two issues in the Linux implementation of the Amateur Radio X.25 PLP (Rose) protocol. A remote user can cause a denial of service by providing specially crafted facilities fields. - CVE-2011-1494 Dan Rosenberg reported an issue in the /dev/mpt2ctl interface provided by the driver for LSI MPT Fusion SAS 2.0 controllers. Local users can obtain elevated privileges by specially crafted ioctl calls. On default Debian installations this is not exploitable as this interface is only accessible to root. - CVE-2011-1495 Dan Rosenberg reported two additional issues in the /dev/mpt2ctl interface provided by the driver for LSI MPT Fusion SAS 2.0 controllers. Local users can obtain elevated privileges and read arbitrary kernel memory by using specially crafted ioctl calls. On default Debian installations this is not exploitable as this interface is only accessible to root. - CVE-2011-1585 Jeff Layton reported an issue in the Common Internet File System (CIFS). Local users can bypass authentication requirements for shares that are already mounted by another user. - CVE-2011-1593 Robert Swiecki reported a signedness issue in the next_pidmap() function, which can be exploited by local users to cause a denial of service. - CVE-2011-1598 Dave Jones reported an issue in the Broadcast Manager Controller Area Network (CAN/BCM) protocol that may allow local users to cause a NULL pointer dereference, resulting in a denial of service. - CVE-2011-1745 Vasiliy Kulikov reported an issue in the Linux support for AGP devices. Local users can obtain elevated privileges or cause a denial of service due to missing bounds checking in the AGPIOC_BIND ioctl. On default Debian installations, this is exploitable only by users in the 'video' group. - CVE-2011-1746 Vasiliy Kulikov reported an issue in the Linux support for AGP devices. Local users can obtain elevated privileges or cause a denial of service due to missing bounds checking in the agp_allocate_memory and agp_create_user_memory routines. On default Debian installations, this is exploitable only by users in the 'video' group. - CVE-2011-1748 Oliver Kartkopp reported an issue in the Controller Area Network (CAN) raw socket implementation which permits local users to cause a NULL pointer dereference, resulting in a denial of service. - CVE-2011-1759 Dan Rosenberg reported an issue in the support for executing 'old ABI' binaries on ARM processors. Local users can obtain elevated privileges due to insufficient bounds checking in the semtimedop system call. - CVE-2011-1767 Alexecy Dobriyan reported an issue in the GRE over IP implementation. Remote users can cause a denial of service by sending a packet during module initialization. - CVE-2011-1770 Dan Rosenberg reported an issue in the Datagram Congestion Control Protocol (DCCP). Remote users can cause a denial of service or potentially obtain access to sensitive kernel memory. - CVE-2011-1776 Timo Warns reported an issue in the Linux implementation for GUID partitions. Users with physical access can gain access to sensitive kernel memory by adding a storage device with a specially crafted corrupted invalid partition table. - CVE-2011-2022 Vasiliy Kulikov reported an issue in the Linux support for AGP devices. Local users can obtain elevated privileges or cause a denial of service due to missing bounds checking in the AGPIOC_UNBIND ioctl. On default Debian installations, this is exploitable only by users in the video group. This update also includes changes queued for the next point release of Debian 6.0, which also fix various non-security issues. These additional changes are described in the package changelog.
    last seen 2019-02-21
    modified 2018-11-10
    plugin id 55028
    published 2011-06-10
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=55028
    title Debian DSA-2240-1 : linux-2.6 - privilege escalation/denial of service/information leak
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1187-1.NASL
    description It was discovered that KVM did not correctly initialize certain CPU registers. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-3698) Thomas Pollet discovered that the RDS network protocol did not check certain iovec buffers. A local attacker could exploit this to crash the system or possibly execute arbitrary code as the root user. (CVE-2010-3865) Vasiliy Kulikov discovered that the Linux kernel X.25 implementation did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3875) Vasiliy Kulikov discovered that the Linux kernel sockets implementation did not properly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3876) Vasiliy Kulikov discovered that the TIPC interface did not correctly initialize certain structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-3877) Nelson Elhage discovered that the Linux kernel IPv4 implementation did not properly audit certain bytecodes in netlink messages. A local attacker could exploit this to cause the kernel to hang, leading to a denial of service. (CVE-2010-3880) Vasiliy Kulikov discovered that kvm did not correctly clear memory. A local attacker could exploit this to read portions of the kernel stack, leading to a loss of privacy. (CVE-2010-3881) Dan Rosenberg discovered that multiple terminal ioctls did not correctly initialize structure memory. A local attacker could exploit this to read portions of kernel stack memory, leading to a loss of privacy. (CVE-2010-4075, CVE-2010-4076, CVE-2010-4077) Dan Rosenberg discovered that the ivtv V4L driver did not correctly initialize certian structures. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4079) Dan Rosenberg discovered that the semctl syscall did not correctly clear kernel memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2010-4083) Dan Rosenberg discovered that the SCSI subsystem did not correctly validate iov segments. A local attacker with access to a SCSI device could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2010-4163, CVE-2010-4668) It was discovered that multithreaded exec did not handle CPU timers correctly. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2010-4248) Nelson Elhage discovered that Econet did not correctly handle AUN packets over UDP. A local attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2010-4342) Tavis Ormandy discovered that the install_special_mapping function could bypass the mmap_min_addr restriction. A local attacker could exploit this to mmap 4096 bytes below the mmap_min_addr area, possibly improving the chances of performing NULL pointer dereference attacks. (CVE-2010-4346) Dan Rosenberg discovered that the OSS subsystem did not handle name termination correctly. A local attacker could exploit this crash the system or gain root privileges. (CVE-2010-4527) Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Dan Carpenter discovered that the Infiniband driver did not correctly handle certain requests. A local user could exploit this to crash the system or potentially gain root privileges. (CVE-2010-4649, CVE-2011-1044) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Neil Horman discovered that NFSv4 did not correctly handle certain orders of operation with ACL data. A remote attacker with access to an NFSv4 mount could exploit this to crash the system, leading to a denial of service. (CVE-2011-1090) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Timo Warns discovered that OSF partition parsing routines did not correctly clear memory. A local attacker with physical access could plug in a specially crafted block device to read kernel memory, leading to a loss of privacy. (CVE-2011-1163) Dan Rosenberg discovered that some ALSA drivers did not correctly check the adapter index during ioctl calls. If this driver was loaded, a local attacker could make a specially crafted ioctl call to gain root privileges. (CVE-2011-1169) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Timo Warns discovered that the GUID partition parsing routines did not correctly validate certain structures. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1577) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1598, CVE-2011-1748) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Vasiliy Kulikov discovered that the AGP driver did not check the size of certain memory allocations. A local attacker with access to the video subsystem could exploit this to run the system out of memory, leading to a denial of service. (CVE-2011-1746). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 55785
    published 2011-08-09
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=55785
    title Ubuntu 10.04 LTS : linux-lts-backport-maverick vulnerabilities (USN-1187-1)
  • NASL family Scientific Linux Local Security Checks
    NASL id SL_20110407_KERNEL_ON_SL6_X.NASL
    description This update fixes the following security issues : - A flaw was found in the sctp_icmp_proto_unreachable() function in the Linux kernel's Stream Control Transmission Protocol (SCTP) implementation. A remote attacker could use this flaw to cause a denial of service. (CVE-2010-4526, Important) - A missing boundary check was found in the dvb_ca_ioctl() function in the Linux kernel's av7110 module. On systems that use old DVB cards that require the av7110 module, a local, unprivileged user could use this flaw to cause a denial of service or escalate their privileges. (CVE-2011-0521, Important) - A race condition was found in the way the Linux kernel's InfiniBand implementation set up new connections. This could allow a remote user to cause a denial of service. (CVE-2011-0695, Important) - A heap overflow flaw in the iowarrior_write() function could allow a user with access to an IO-Warrior USB device, that supports more than 8 bytes per report, to cause a denial of service or escalate their privileges. (CVE-2010-4656, Moderate) - A flaw was found in the way the Linux Ethernet bridge implementation handled certain IGMP (Internet Group Management Protocol) packets. A local, unprivileged user on a system that has a network interface in an Ethernet bridge could use this flaw to crash that system (CVE-2011-0716, Moderate) - A NULL pointer dereference flaw was found in the Generic Receive Offload (GRO) functionality in the Linux kernel's networking implementation. If both GRO and promiscuous mode were enabled on an interface in a virtual LAN (VLAN), it could result in a denial of service when a malformed VLAN frame is received on that interface. (CVE-2011-1478, Moderate) - A missing initialization flaw in the Linux kernel could lead to an information leak. (CVE-2010-3296, Low) - A missing security check in the Linux kernel's implementation of the install_special_mapping() function could allow a local, unprivileged user to bypass the mmap_min_addr protection mechanism. (CVE-2010-4346, Low) - A logic error in the orinoco_ioctl_set_auth() function in the Linux kernel's ORiNOCO wireless extensions support implementation could render TKIP countermeasures ineffective when it is enabled, as it enabled the card instead of shutting it down. (CVE-2010-4648, Low) - A missing initialization flaw was found in the ethtool_get_regs() function in the Linux kernel's ethtool IOCTL handler. A local user who has the CAP_NET_ADMIN capability could use this flaw to cause an information leak. (CVE-2010-4655, Low) - An information leak was found in the Linux kernel's task_show_regs() implementation. On IBM S/390 systems, a local, unprivileged user could use this flaw to read /proc/[PID]/status files, allowing them to discover the CPU register values of processes. (CVE-2011-0710, Low) This update also fixes several bugs. The system must be rebooted for this update to take effect.
    last seen 2019-02-21
    modified 2018-12-31
    plugin id 61012
    published 2012-08-01
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=61012
    title Scientific Linux Security Update : kernel on SL6.x i386/x86_64
  • NASL family SuSE Local Security Checks
    NASL id SUSE_11_3_KERNEL-110414.NASL
    description The openSUSE 11.3 kernel was updated to 2.6.34.8 to fix various bugs and security issues. Following security issues have been fixed: CVE-2011-1493: In the rose networking stack, when parsing the FAC_NATIONAL_DIGIS facilities field, it was possible for a remote host to provide more digipeaters than expected, resulting in heap corruption. Check against ROSE_MAX_DIGIS to prevent overflows, and abort facilities parsing on failure. CVE-2011-1182: Local attackers could send signals to their programs that looked like coming from the kernel, potentially gaining privileges in the context of setuid programs. CVE-2011-1082: The epoll subsystem in Linux did not prevent users from creating circular epoll file structures, potentially leading to a denial of service (kernel deadlock). CVE-2011-1478: An issue in the core GRO code where an skb belonging to an unknown VLAN is reused could result in a NULL pointer dereference. CVE-2011-1163: The code for evaluating OSF partitions (in fs/partitions/osf.c) contained a bug that leaks data from kernel heap memory to userspace for certain corrupted OSF partitions. CVE-2011-1012: The code for evaluating LDM partitions (in fs/partitions/ldm.c) contained a bug that could crash the kernel for certain corrupted LDM partitions. CVE-2011-1010: The code for evaluating Mac partitions (in fs/partitions/mac.c) contained a bug that could crash the kernel for certain corrupted Mac partitions. CVE-2011-1476: Specially crafted requests may be written to /dev/sequencer resulting in an underflow when calculating a size for a copy_from_user() operation in the driver for MIDI interfaces. On x86, this just returns an error, but it could have caused memory corruption on other architectures. Other malformed requests could have resulted in the use of uninitialized variables. CVE-2011-1477: Due to a failure to validate user-supplied indexes in the driver for Yamaha YM3812 and OPL-3 chips, a specially crafted ioctl request could have been sent to /dev/sequencer, resulting in reading and writing beyond the bounds of heap buffers, and potentially allowing privilege escalation. CVE-2011-0191: A information leak in the XFS geometry calls could be used by local attackers to gain access to kernel information. CVE-2011-1090: A page allocator issue in NFS v4 ACL handling that could lead to a denial of service (crash) was fixed. CVE-2010-3880: net/ipv4/inet_diag.c in the Linux kernel did not properly audit INET_DIAG bytecode, which allowed local users to cause a denial of service (kernel infinite loop) via crafted INET_DIAG_REQ_BYTECODE instructions in a netlink message that contains multiple attribute elements, as demonstrated by INET_DIAG_BC_JMP instructions. CVE-2010-4656: Fixed a buffer size issue in 'usb iowarrior' module, where a malicious device could overflow a kernel buffer. CVE-2011-0521: The dvb_ca_ioctl function in drivers/media/dvb/ttpci/av7110_ca.c in the Linux kernel did not check the sign of a certain integer field, which allowed local users to cause a denial of service (memory corruption) or possibly have unspecified other impact via a negative value. CVE-2010-3875: The ax25_getname function in net/ax25/af_ax25.c in the Linux kernel did not initialize a certain structure, which allowed local users to obtain potentially sensitive information from kernel stack memory by reading a copy of this structure. CVE-2010-3876: net/packet/af_packet.c in the Linux kernel did not properly initialize certain structure members, which allowed local users to obtain potentially sensitive information from kernel stack memory by leveraging the CAP_NET_RAW capability to read copies of the applicable structures. CVE-2010-3877: The get_name function in net/tipc/socket.c in the Linux kernel did not initialize a certain structure, which allowed local users to obtain potentially sensitive information from kernel stack memory by reading a copy of this structure. CVE-2010-3705: The sctp_auth_asoc_get_hmac function in net/sctp/auth.c in the Linux kernel did not properly validate the hmac_ids array of an SCTP peer, which allowed remote attackers to cause a denial of service (memory corruption and panic) via a crafted value in the last element of this array. CVE-2011-0711: A stack memory information leak in the xfs FSGEOMETRY_V1 ioctl was fixed. CVE-2011-0712: Multiple buffer overflows in the caiaq Native Instruments USB audio functionality in the Linux kernel might have allowed attackers to cause a denial of service or possibly have unspecified other impact via a long USB device name, related to (1) the snd_usb_caiaq_audio_init function in sound/usb/caiaq/audio.c and (2) the snd_usb_caiaq_midi_init function in sound/usb/caiaq/midi.c. CVE-2010-4525: Linux kernel did not initialize the kvm_vcpu_events->interrupt.pad structure member, which allowed local users to obtain potentially sensitive information from kernel stack memory via unspecified vectors. CVE-2010-3881: arch/x86/kvm/x86.c in the Linux kernel did not initialize certain structure members, which allowed local users to obtain potentially sensitive information from kernel stack memory via read operations on the /dev/kvm device. CVE-2010-4075: The uart_get_count function in drivers/serial/serial_core.c in the Linux kernel did not properly initialize a certain structure member, which allowed local users to obtain potentially sensitive information from kernel stack memory via a TIOCGICOUNT ioctl call. CVE-2010-4076: The rs_ioctl function in drivers/char/amiserial.c in the Linux kernel did not properly initialize a certain structure member, which allowed local users to obtain potentially sensitive information from kernel stack memory via a TIOCGICOUNT ioctl call. CVE-2010-4077: The ntty_ioctl_tiocgicount function in drivers/char/nozomi.c in the Linux kernel did not properly initialize a certain structure member, which allowed local users to obtain potentially sensitive information from kernel stack memory via a TIOCGICOUNT ioctl call. CVE-2010-4248: Race condition in the __exit_signal function in kernel/exit.c in the Linux kernel allowed local users to cause a denial of service via vectors related to multithreaded exec, the use of a thread group leader in kernel/posix-cpu-timers.c, and the selection of a new thread group leader in the de_thread function in fs/exec.c. CVE-2010-4243: fs/exec.c in the Linux kernel did not enable the OOM Killer to assess use of stack memory by arrays representing the (1) arguments and (2) environment, which allows local users to cause a denial of service (memory consumption) via a crafted exec system call, aka an 'OOM dodging issue,' a related issue to CVE-2010-3858. CVE-2010-4251: A system out of memory condition (denial of service) could be triggered with a large socket backlog, exploitable by local users. This has been addressed by backlog limiting. CVE-2010-4648: Fixed cryptographic weakness potentially leaking information to remote (but physically nearby) users in the orinoco wireless driver. CVE-2010-4527: The load_mixer_volumes function in sound/oss/soundcard.c in the OSS sound subsystem in the Linux kernel incorrectly expected that a certain name field ends with a '\0' character, which allowed local users to conduct buffer overflow attacks and gain privileges, or possibly obtain sensitive information from kernel memory, via a SOUND_MIXER_SETLEVELS ioctl call. CVE-2010-4668: The blk_rq_map_user_iov function in block/blk-map.c in the Linux kernel allowed local users to cause a denial of service (panic) via a zero-length I/O request in a device ioctl to a SCSI device, related to an unaligned map. NOTE: this vulnerability exists because of an incomplete fix for CVE-2010-4163. CVE-2010-4650: A kernel buffer overflow in the cuse server module was fixed, which might have allowed local privilege escalation. However only CUSE servers could exploit it and /dev/cuse is normally restricted to root. CVE-2010-4649: Integer overflow in the ib_uverbs_poll_cq function in drivers/infiniband/core/uverbs_cmd.c in the Linux kernel allowed local users to cause a denial of service (memory corruption) or possibly have unspecified other impact via a large value of a certain structure member. CVE-2010-4250: A memory leak within inotify could be used by local attackers to cause the machine to run out of memory (denial of service). CVE-2010-4346: The install_special_mapping function in mm/mmap.c in the Linux kernel did not make an expected security_file_mmap function call, which allowed local users to bypass intended mmap_min_addr restrictions and possibly conduct NULL pointer dereference attacks via a crafted assembly-language application. CVE-2010-4529: Integer underflow in the irda_getsockopt function in net/irda/af_irda.c in the Linux kernel on platforms other than x86 allowed local users to obtain potentially sensitive information from kernel heap memory via an IRLMP_ENUMDEVICES getsockopt call. CVE-2010-4342: The aun_incoming function in net/econet/af_econet.c in the Linux kernel, when Econet is enabled, allowed remote attackers to cause a denial of service (NULL pointer dereference and OOPS) by sending an Acorn Universal Networking (AUN) packet over UDP. CVE-2010-3849: The econet_sendmsg function in net/econet/af_econet.c in the Linux kernel, when an econet address is configured, allowed local users to cause a denial of service (NULL pointer dereference and OOPS) via a sendmsg call that specifies a NULL value for the remote address field. CVE-2010-3848: Stack-based buffer overflow in the econet_sendmsg function in net/econet/af_econet.c in the Linux kernel when an econet address is configured, allowed local users to gain privileges by providing a large number of iovec structures. CVE-2010-3850: The ec_dev_ioctl function in net/econet/af_econet.c in the Linux kernel did not require the CAP_NET_ADMIN capability, which allowed local users to bypass intended access restrictions and configure econet addresses via an SIOCSIFADDR ioctl call. CVE-2010-4343: drivers/scsi/bfa/bfa_core.c in the Linux kernel did not initialize a certain port data structure, which allows local users to cause a denial of service (system crash) via read operations on an fc_host statistics file. CVE-2010-3699: The backend driver in Xen 3.x allows guest OS users to cause a denial of service via a kernel thread leak, which prevents the device and guest OS from being shut down or create a zombie domain, causes a hang in zenwatch, or prevents unspecified xm commands from working properly, related to (1) netback, (2) blkback, or (3) blktap.
    last seen 2019-02-21
    modified 2018-11-10
    plugin id 75554
    published 2014-06-13
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=75554
    title openSUSE Security Update : kernel (openSUSE-SU-2011:0399-1)
  • NASL family Red Hat Local Security Checks
    NASL id REDHAT-RHSA-2011-1253.NASL
    description Updated kernel-rt packages that fix multiple security issues and various bugs are now available for Red Hat Enterprise MRG 2.0. The Red Hat Security Response Team has rated this update as having important security impact. Common Vulnerability Scoring System (CVSS) base scores, which give detailed severity ratings, are available for each vulnerability from the CVE links in the References section. Security fixes : * A flaw in the SCTP and DCCP implementations could allow a remote attacker to cause a denial of service. (CVE-2010-4526, CVE-2011-1770, Important) * Flaws in the Management Module Support for Message Passing Technology (MPT) based controllers could allow a local, unprivileged user to cause a denial of service, an information leak, or escalate their privileges. (CVE-2011-1494, CVE-2011-1495, Important) * Flaws in the AGPGART driver, and a flaw in agp_allocate_memory(), could allow a local user to cause a denial of service or escalate their privileges. (CVE-2011-1745, CVE-2011-2022, CVE-2011-1746, Important) * A flaw in the client-side NLM implementation could allow a local, unprivileged user to cause a denial of service. (CVE-2011-2491, Important) * A flaw in the Bluetooth implementation could allow a remote attacker to cause a denial of service or escalate their privileges. (CVE-2011-2497, Important) * Flaws in the netlink-based wireless configuration interface could allow a local user, who has the CAP_NET_ADMIN capability, to cause a denial of service or escalate their privileges on systems that have an active wireless interface. (CVE-2011-2517, Important) * The maximum file offset handling for ext4 file systems could allow a local, unprivileged user to cause a denial of service. (CVE-2011-2695, Important) * A local, unprivileged user could allocate large amounts of memory not visible to the OOM killer, causing a denial of service. (CVE-2010-4243, Moderate) * The proc file system could allow a local, unprivileged user to obtain sensitive information or possibly cause integrity issues. (CVE-2011-1020, Moderate) * A local, privileged user could possibly write arbitrary kernel memory via /sys/kernel/debug/acpi/custom_method. (CVE-2011-1021, Moderate) * Inconsistency in the methods for allocating and freeing NFSv4 ACL data; CVE-2010-4250 fix caused a regression; a flaw in next_pidmap() and inet_diag_bc_audit(); flaws in the CAN implementation; a race condition in the memory merging support; a flaw in the taskstats subsystem; and the way mapping expansions were handled could allow a local, unprivileged user to cause a denial of service. (CVE-2011-1090, CVE-2011-1479, CVE-2011-1593, CVE-2011-2213, CVE-2011-1598, CVE-2011-1748, CVE-2011-2183, CVE-2011-2484, CVE-2011-2496, Moderate) * A flaw in GRO could result in a denial of service when a malformed VLAN frame is received. (CVE-2011-1478, Moderate) * napi_reuse_skb() could be called on VLAN packets allowing an attacker on the local network to possibly trigger a denial of service. (CVE-2011-1576, Moderate) * A denial of service could occur if packets were received while the ipip or ip_gre module was being loaded. (CVE-2011-1767, CVE-2011-1768, Moderate) * Information leaks. (CVE-2011-1160, CVE-2011-2492, CVE-2011-2495, Low) * Flaws in the EFI GUID Partition Table implementation could allow a local attacker to cause a denial of service. (CVE-2011-1577, CVE-2011-1776, Low) * While a user has a CIFS share mounted that required successful authentication, a local, unprivileged user could mount that share without knowing the correct password if mount.cifs was setuid root. (CVE-2011-1585, Low) Red Hat would like to thank Dan Rosenberg for reporting CVE-2011-1770, CVE-2011-1494, CVE-2011-1495, CVE-2011-2497, and CVE-2011-2213; Vasiliy Kulikov of Openwall for reporting CVE-2011-1745, CVE-2011-2022, CVE-2011-1746, CVE-2011-2484, and CVE-2011-2495; Vasily Averin for reporting CVE-2011-2491; Brad Spengler for reporting CVE-2010-4243; Kees Cook for reporting CVE-2011-1020; Robert Swiecki for reporting CVE-2011-1593 and CVE-2011-2496; Oliver Hartkopp for reporting CVE-2011-1748; Andrea Righi for reporting CVE-2011-2183; Ryan Sweat for reporting CVE-2011-1478 and CVE-2011-1576; Peter Huewe for reporting CVE-2011-1160; Marek Kroemeke and Filip Palian for reporting CVE-2011-2492; and Timo Warns for reporting CVE-2011-1577 and CVE-2011-1776.
    last seen 2019-02-21
    modified 2018-12-20
    plugin id 76634
    published 2014-07-22
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=76634
    title RHEL 6 : MRG (RHSA-2011:1253)
  • NASL family Ubuntu Local Security Checks
    NASL id UBUNTU_USN-1160-1.NASL
    description Dan Rosenberg discovered that IRDA did not correctly check the size of buffers. On non-x86 systems, a local attacker could exploit this to read kernel heap memory, leading to a loss of privacy. (CVE-2010-4529) Dan Rosenburg discovered that the CAN subsystem leaked kernel addresses into the /proc filesystem. A local attacker could use this to increase the chances of a successful memory corruption exploit. (CVE-2010-4565) Kees Cook discovered that the IOWarrior USB device driver did not correctly check certain size fields. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2010-4656) Goldwyn Rodrigues discovered that the OCFS2 filesystem did not correctly clear memory when writing certain file holes. A local attacker could exploit this to read uninitialized data from the disk, leading to a loss of privacy. (CVE-2011-0463) Dan Carpenter discovered that the TTPCI DVB driver did not check certain values during an ioctl. If the dvb-ttpci module was loaded, a local attacker could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-0521) Jens Kuehnel discovered that the InfiniBand driver contained a race condition. On systems using InfiniBand, a local attacker could send specially crafted requests to crash the system, leading to a denial of service. (CVE-2011-0695) Dan Rosenberg discovered that XFS did not correctly initialize memory. A local attacker could make crafted ioctl calls to leak portions of kernel stack memory, leading to a loss of privacy. (CVE-2011-0711) Rafael Dominguez Vega discovered that the caiaq Native Instruments USB driver did not correctly validate string lengths. A local attacker with physical access could plug in a specially crafted USB device to crash the system or potentially gain root privileges. (CVE-2011-0712) Kees Cook reported that /proc/pid/stat did not correctly filter certain memory locations. A local attacker could determine the memory layout of processes in an attempt to increase the chances of a successful memory corruption exploit. (CVE-2011-0726) Timo Warns discovered that MAC partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system or potentially gain root privileges. (CVE-2011-1010) Timo Warns discovered that LDM partition parsing routines did not correctly calculate block counts. A local attacker with physical access could plug in a specially crafted block device to crash the system, leading to a denial of service. (CVE-2011-1012) Matthiew Herrb discovered that the drm modeset interface did not correctly handle a signed comparison. A local attacker could exploit this to crash the system or possibly gain root privileges. (CVE-2011-1013) Marek Olsak discovered that the Radeon GPU drivers did not correctly validate certain registers. On systems with specific hardware, a local attacker could exploit this to write to arbitrary video memory. (CVE-2011-1016) Timo Warns discovered that the LDM disk partition handling code did not correctly handle certain values. By inserting a specially crafted disk device, a local attacker could exploit this to gain root privileges. (CVE-2011-1017) Vasiliy Kulikov discovered that the CAP_SYS_MODULE capability was not needed to load kernel modules. A local attacker with the CAP_NET_ADMIN capability could load existing kernel modules, possibly increasing the attack surface available on the system. (CVE-2011-1019) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly clear memory. A local attacker could exploit this to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1078) Vasiliy Kulikov discovered that the Bluetooth stack did not correctly check that device name strings were NULL terminated. A local attacker could exploit this to crash the system, leading to a denial of service, or leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1079) Vasiliy Kulikov discovered that bridge network filtering did not check that name fields were NULL terminated. A local attacker could exploit this to leak contents of kernel stack memory, leading to a loss of privacy. (CVE-2011-1080) Nelson Elhage discovered that the epoll subsystem did not correctly handle certain structures. A local attacker could create malicious requests that would hang the system, leading to a denial of service. (CVE-2011-1082) Johan Hovold discovered that the DCCP network stack did not correctly handle certain packet combinations. A remote attacker could send specially crafted network traffic that would crash the system, leading to a denial of service. (CVE-2011-1093) Peter Huewe discovered that the TPM device did not correctly initialize memory. A local attacker could exploit this to read kernel heap memory contents, leading to a loss of privacy. (CVE-2011-1160) Dan Rosenberg discovered that some ALSA drivers did not correctly check the adapter index during ioctl calls. If this driver was loaded, a local attacker could make a specially crafted ioctl call to gain root privileges. (CVE-2011-1169) Vasiliy Kulikov discovered that the netfilter code did not check certain strings copied from userspace. A local attacker with netfilter access could exploit this to read kernel memory or crash the system, leading to a denial of service. (CVE-2011-1170, CVE-2011-1171, CVE-2011-1172, CVE-2011-2534) Vasiliy Kulikov discovered that the Acorn Universal Networking driver did not correctly initialize memory. A remote attacker could send specially crafted traffic to read kernel stack memory, leading to a loss of privacy. (CVE-2011-1173) Dan Rosenberg discovered that the IRDA subsystem did not correctly check certain field sizes. If a system was using IRDA, a remote attacker could send specially crafted traffic to crash the system or gain root privileges. (CVE-2011-1180) Julien Tinnes discovered that the kernel did not correctly validate the signal structure from tkill(). A local attacker could exploit this to send signals to arbitrary threads, possibly bypassing expected restrictions. (CVE-2011-1182) Dan Rosenberg reported errors in the OSS (Open Sound System) MIDI interface. A local attacker on non-x86 systems might be able to cause a denial of service. (CVE-2011-1476) Dan Rosenberg reported errors in the kernel's OSS (Open Sound System) driver for Yamaha FM synthesizer chips. A local user can exploit this to cause memory corruption, causing a denial of service or privilege escalation. (CVE-2011-1477) Ryan Sweat discovered that the GRO code did not correctly validate memory. In some configurations on systems using VLANs, a remote attacker could send specially crafted traffic to crash the system, leading to a denial of service. (CVE-2011-1478) Dan Rosenberg discovered that MPT devices did not correctly validate certain values in ioctl calls. If these drivers were loaded, a local attacker could exploit this to read arbitrary kernel memory, leading to a loss of privacy. (CVE-2011-1494, CVE-2011-1495) Tavis Ormandy discovered that the pidmap function did not correctly handle large requests. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-1593) Vasiliy Kulikov discovered that the AGP driver did not check certain ioctl values. A local attacker with access to the video subsystem could exploit this to crash the system, leading to a denial of service, or possibly gain root privileges. (CVE-2011-1745, CVE-2011-2022) Oliver Hartkopp and Dave Jones discovered that the CAN network driver did not correctly validate certain socket structures. If this driver was loaded, a local attacker could crash the system, leading to a denial of service. (CVE-2011-1748) A flaw was found in the b43 driver in the Linux kernel. An attacker could use this flaw to cause a denial of service if the system has an active wireless interface using the b43 driver. (CVE-2011-3359) Maynard Johnson discovered that on POWER7, certain speculative events may raise a performance monitor exception. A local attacker could exploit this to crash the system, leading to a denial of service. (CVE-2011-4611) Dan Rosenberg discovered flaws in the linux Rose (X.25 PLP) layer used by amateur radio. A local user or a remote user on an X.25 network could exploit these flaws to execute arbitrary code as root. (CVE-2011-4913). Note that Tenable Network Security has extracted the preceding description block directly from the Ubuntu security advisory. Tenable has attempted to automatically clean and format it as much as possible without introducing additional issues.
    last seen 2019-02-21
    modified 2018-12-01
    plugin id 55454
    published 2011-06-29
    reporter Tenable
    source https://www.tenable.com/plugins/index.php?view=single&id=55454
    title Ubuntu 10.10 : linux vulnerabilities (USN-1160-1)
packetstorm via4
data source https://packetstormsecurity.com/files/download/105078/USN-1202-1.txt
id PACKETSTORM:105078
last seen 2016-12-05
published 2011-09-14
reporter Ubuntu
source https://packetstormsecurity.com/files/105078/Ubuntu-Security-Notice-USN-1202-1.html
title Ubuntu Security Notice USN-1202-1
redhat via4
advisories
  • bugzilla
    id 691270
    title CVE-2011-1478 kernel: gro: reset dev and skb_iff on skb reuse
    oval
    AND
    • OR
      • comment Red Hat Enterprise Linux 6 Client is installed
        oval oval:com.redhat.rhsa:tst:20100842001
      • comment Red Hat Enterprise Linux 6 Server is installed
        oval oval:com.redhat.rhsa:tst:20100842002
      • comment Red Hat Enterprise Linux 6 Workstation is installed
        oval oval:com.redhat.rhsa:tst:20100842003
      • comment Red Hat Enterprise Linux 6 ComputeNode is installed
        oval oval:com.redhat.rhsa:tst:20100842004
    • OR
      • AND
        • comment kernel is earlier than 0:2.6.32-71.24.1.el6
          oval oval:com.redhat.rhsa:tst:20110421005
        • comment kernel is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842006
      • AND
        • comment kernel-bootwrapper is earlier than 0:2.6.32-71.24.1.el6
          oval oval:com.redhat.rhsa:tst:20110421009
        • comment kernel-bootwrapper is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842010
      • AND
        • comment kernel-debug is earlier than 0:2.6.32-71.24.1.el6
          oval oval:com.redhat.rhsa:tst:20110421015
        • comment kernel-debug is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842012
      • AND
        • comment kernel-debug-devel is earlier than 0:2.6.32-71.24.1.el6
          oval oval:com.redhat.rhsa:tst:20110421013
        • comment kernel-debug-devel is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842014
      • AND
        • comment kernel-devel is earlier than 0:2.6.32-71.24.1.el6
          oval oval:com.redhat.rhsa:tst:20110421011
        • comment kernel-devel is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842016
      • AND
        • comment kernel-doc is earlier than 0:2.6.32-71.24.1.el6
          oval oval:com.redhat.rhsa:tst:20110421023
        • comment kernel-doc is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842024
      • AND
        • comment kernel-firmware is earlier than 0:2.6.32-71.24.1.el6
          oval oval:com.redhat.rhsa:tst:20110421021
        • comment kernel-firmware is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842026
      • AND
        • comment kernel-headers is earlier than 0:2.6.32-71.24.1.el6
          oval oval:com.redhat.rhsa:tst:20110421007
        • comment kernel-headers is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842008
      • AND
        • comment kernel-kdump is earlier than 0:2.6.32-71.24.1.el6
          oval oval:com.redhat.rhsa:tst:20110421017
        • comment kernel-kdump is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842018
      • AND
        • comment kernel-kdump-devel is earlier than 0:2.6.32-71.24.1.el6
          oval oval:com.redhat.rhsa:tst:20110421019
        • comment kernel-kdump-devel is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842020
      • AND
        • comment perf is earlier than 0:2.6.32-71.24.1.el6
          oval oval:com.redhat.rhsa:tst:20110421025
        • comment perf is signed with Red Hat redhatrelease2 key
          oval oval:com.redhat.rhsa:tst:20100842022
    rhsa
    id RHSA-2011:0421
    released 2011-04-07
    severity Important
    title RHSA-2011:0421: kernel security and bug fix update (Important)
  • bugzilla
    id 691270
    title CVE-2011-1478 kernel: gro: reset dev and skb_iff on skb reuse
    oval
    AND
    • comment Red Hat Enterprise Linux 5 is installed
      oval oval:com.redhat.rhsa:tst:20070055001
    • OR
      • AND
        • comment kernel is earlier than 0:2.6.18-238.9.1.el5
          oval oval:com.redhat.rhsa:tst:20110429002
        • comment kernel is signed with Red Hat redhatrelease key
          oval oval:com.redhat.rhsa:tst:20070099003
      • AND
        • comment kernel-PAE is earlier than 0:2.6.18-238.9.1.el5
          oval oval:com.redhat.rhsa:tst:20110429020
        • comment kernel-PAE is signed with Red Hat redhatrelease key
          oval oval:com.redhat.rhsa:tst:20070099019
      • AND
        • comment kernel-PAE-devel is earlier than 0:2.6.18-238.9.1.el5
          oval oval:com.redhat.rhsa:tst:20110429022
        • comment kernel-PAE-devel is signed with Red Hat redhatrelease key
          oval oval:com.redhat.rhsa:tst:20070099017
      • AND
        • comment kernel-debug is earlier than 0:2.6.18-238.9.1.el5
          oval oval:com.redhat.rhsa:tst:20110429010
        • comment kernel-debug is signed with Red Hat redhatrelease key
          oval oval:com.redhat.rhsa:tst:20070993007
      • AND
        • comment kernel-debug-devel is earlier than 0:2.6.18-238.9.1.el5
          oval oval:com.redhat.rhsa:tst:20110429006
        • comment kernel-debug-devel is signed with Red Hat redhatrelease key
          oval oval:com.redhat.rhsa:tst:20070993013
      • AND
        • comment kernel-devel is earlier than 0:2.6.18-238.9.1.el5
          oval oval:com.redhat.rhsa:tst:20110429012
        • comment kernel-devel is signed with Red Hat redhatrelease key
          oval oval:com.redhat.rhsa:tst:20070099011
      • AND
        • comment kernel-doc is earlier than 0:2.6.18-238.9.1.el5
          oval oval:com.redhat.rhsa:tst:20110429024
        • comment kernel-doc is signed with Red Hat redhatrelease key
          oval oval:com.redhat.rhsa:tst:20070099021
      • AND
        • comment kernel-headers is earlier than 0:2.6.18-238.9.1.el5
          oval oval:com.redhat.rhsa:tst:20110429004
        • comment kernel-headers is signed with Red Hat redhatrelease key
          oval oval:com.redhat.rhsa:tst:20070099005
      • AND
        • comment kernel-kdump is earlier than 0:2.6.18-238.9.1.el5
          oval oval:com.redhat.rhsa:tst:20110429018
        • comment kernel-kdump is signed with Red Hat redhatrelease key
          oval oval:com.redhat.rhsa:tst:20070099015
      • AND
        • comment kernel-kdump-devel is earlier than 0:2.6.18-238.9.1.el5
          oval oval:com.redhat.rhsa:tst:20110429016
        • comment kernel-kdump-devel is signed with Red Hat redhatrelease key
          oval oval:com.redhat.rhsa:tst:20070099013
      • AND
        • comment kernel-xen is earlier than 0:2.6.18-238.9.1.el5
          oval oval:com.redhat.rhsa:tst:20110429008
        • comment kernel-xen is signed with Red Hat redhatrelease key
          oval oval:com.redhat.rhsa:tst:20070099007
      • AND
        • comment kernel-xen-devel is earlier than 0:2.6.18-238.9.1.el5
          oval oval:com.redhat.rhsa:tst:20110429014
        • comment kernel-xen-devel is signed with Red Hat redhatrelease key
          oval oval:com.redhat.rhsa:tst:20070099009
    rhsa
    id RHSA-2011:0429
    released 2011-04-12
    severity Important
    title RHSA-2011:0429: kernel security and bug fix update (Important)
rpms
  • kernel-0:2.6.32-71.24.1.el6
  • kernel-bootwrapper-0:2.6.32-71.24.1.el6
  • kernel-debug-0:2.6.32-71.24.1.el6
  • kernel-debug-devel-0:2.6.32-71.24.1.el6
  • kernel-devel-0:2.6.32-71.24.1.el6
  • kernel-doc-0:2.6.32-71.24.1.el6
  • kernel-firmware-0:2.6.32-71.24.1.el6
  • kernel-headers-0:2.6.32-71.24.1.el6
  • kernel-kdump-0:2.6.32-71.24.1.el6
  • kernel-kdump-devel-0:2.6.32-71.24.1.el6
  • perf-0:2.6.32-71.24.1.el6
  • kernel-0:2.6.18-238.9.1.el5
  • kernel-PAE-0:2.6.18-238.9.1.el5
  • kernel-PAE-devel-0:2.6.18-238.9.1.el5
  • kernel-debug-0:2.6.18-238.9.1.el5
  • kernel-debug-devel-0:2.6.18-238.9.1.el5
  • kernel-devel-0:2.6.18-238.9.1.el5
  • kernel-doc-0:2.6.18-238.9.1.el5
  • kernel-headers-0:2.6.18-238.9.1.el5
  • kernel-kdump-0:2.6.18-238.9.1.el5
  • kernel-kdump-devel-0:2.6.18-238.9.1.el5
  • kernel-xen-0:2.6.18-238.9.1.el5
  • kernel-xen-devel-0:2.6.18-238.9.1.el5
refmap via4
bugtraq 20111013 VMSA-2011-0012 VMware ESXi and ESX updates to third party libraries and ESX Service Console
confirm
mlist [oss-security] 20110328 CVE-2011-1478 kernel: gro: reset dev and skb_iff on skb reuse
secunia 46397
sreason 8480
Last major update 13-05-2012 - 00:00
Published 23-10-2011 - 06:55
Last modified 09-10-2018 - 15:30
Back to Top