ID CVE-2022-4247
Summary A vulnerability classified as critical was found in Movie Ticket Booking System. This vulnerability affects unknown code of the file booking.php. The manipulation of the argument id leads to sql injection. The attack can be initiated remotely. The exploit has been disclosed to the public and may be used. The identifier of this vulnerability is VDB-214624.
References
Vulnerable Configurations
  • cpe:2.3:a:movie_ticket_booking_system_project:movie_ticket_booking_system:-:*:*:*:*:*:*:*
    cpe:2.3:a:movie_ticket_booking_system_project:movie_ticket_booking_system:-:*:*:*:*:*:*:*
CVSS
Base: None
Impact:
Exploitability:
CWE CWE-707
CAPEC
  • Blind SQL Injection
    Blind SQL Injection results from an insufficient mitigation for SQL Injection. Although suppressing database error messages are considered best practice, the suppression alone is not sufficient to prevent SQL Injection. Blind SQL Injection is a form of SQL Injection that overcomes the lack of error messages. Without the error messages that facilitate SQL Injection, the adversary constructs input strings that probe the target through simple Boolean SQL expressions. The adversary can determine if the syntax and structure of the injection was successful based on whether the query was executed or not. Applied iteratively, the adversary determines how and where the target is vulnerable to SQL Injection.
  • XQuery Injection
    This attack utilizes XQuery to probe and attack server systems; in a similar manner that SQL Injection allows an attacker to exploit SQL calls to RDBMS, XQuery Injection uses improperly validated data that is passed to XQuery commands to traverse and execute commands that the XQuery routines have access to. XQuery injection can be used to enumerate elements on the victim's environment, inject commands to the local host, or execute queries to remote files and data sources.
  • Postfix, Null Terminate, and Backslash
    If a string is passed through a filter of some kind, then a terminal NULL may not be valid. Using alternate representation of NULL allows an attacker to embed the NULL mid-string while postfixing the proper data so that the filter is avoided. One example is a filter that looks for a trailing slash character. If a string insertion is possible, but the slash must exist, an alternate encoding of NULL in mid-string may be used.
  • Generic Cross-Browser Cross-Domain Theft
    An attacker makes use of Cascading Style Sheets (CSS) injection to steal data cross domain from the victim's browser. The attack works by abusing the standards relating to loading of CSS: 1. Send cookies on any load of CSS (including cross-domain) 2. When parsing returned CSS ignore all data that does not make sense before a valid CSS descriptor is found by the CSS parser By having control of some text in the victim's domain, the attacker is able to inject a seemingly valid CSS string. It does not matter if this CSS string is preceded by other data. The CSS parser will still locate the CSS string. If the attacker is able to control two injection points, one before the cross domain data that the attacker is interested in receiving and the other one after, the attacker can use this attack to steal all of the data in between these two CSS injection points when referencing the injected CSS while performing rendering on the site that the attacker controls. When rendering, the CSS parser will detect the valid CSS string to parse and ignore the data that "does not make sense". That data will simply be rendered. That data is in fact the data that the attacker just stole cross domain. The stolen data may contain sensitive information, such CSRF protection tokens.
  • Web Services Protocol Manipulation
    An adversary manipulates a web service related protocol to cause a web application or service to react differently than intended. This can either be performed through the manipulation of call parameters to include unexpected values, or by changing the called function to one that should normally be restricted or limited. By leveraging this pattern of attack, the adversary is able to gain access to data or resources normally restricted, or to cause the application or service to crash.
  • XPath Injection
    An attacker can craft special user-controllable input consisting of XPath expressions to inject the XML database and bypass authentication or glean information that he normally would not be able to. XPath Injection enables an attacker to talk directly to the XML database, thus bypassing the application completely. XPath Injection results from the failure of an application to properly sanitize input used as part of dynamic XPath expressions used to query an XML database.
  • HTTP Response Splitting
    This attack uses a maliciously-crafted HTTP request in order to cause a vulnerable web server to respond with an HTTP response stream that will be interpreted by the client as two separate responses instead of one. This is possible when user-controlled input is used unvalidated as part of the response headers. The target software, the client, will interpret the injected header as being a response to a second request, thereby causing the maliciously-crafted contents be displayed and possibly cached.
  • Using Slashes and URL Encoding Combined to Bypass Validation Logic
    This attack targets the encoding of the URL combined with the encoding of the slash characters. An attacker can take advantage of the multiple ways of encoding a URL and abuse the interpretation of the URL. A URL may contain special character that need special syntax handling in order to be interpreted. Special characters are represented using a percentage character followed by two digits representing the octet code of the original character (%HEX-CODE). For instance US-ASCII space character would be represented with %20. This is often referred as escaped ending or percent-encoding. Since the server decodes the URL from the requests, it may restrict the access to some URL paths by validating and filtering out the URL requests it received. An attacker will try to craft an URL with a sequence of special characters which once interpreted by the server will be equivalent to a forbidden URL. It can be difficult to protect against this attack since the URL can contain other format of encoding such as UTF-8 encoding, Unicode-encoding, etc.
  • Embedding NULL Bytes
    An attacker embeds one or more null bytes in input to the target software. This attack relies on the usage of a null-valued byte as a string terminator in many environments. The goal is for certain components of the target software to stop processing the input when it encounters the null byte(s).
  • Using Escaped Slashes in Alternate Encoding
    This attack targets the use of the backslash in alternate encoding. An attacker can provide a backslash as a leading character and causes a parser to believe that the next character is special. This is called an escape. By using that trick, the attacker tries to exploit alternate ways to encode the same character which leads to filter problems and opens avenues to attack.
  • SOAP Manipulation
    Simple Object Access Protocol (SOAP) is used as a communication protocol between a client and server to invoke web services on the server. It is an XML-based protocol, and therefore suffers from many of the same shortcomings as other XML-based protocols. Adviseries can make use these shortcomings to mount an denial of service attack, disclose information and execute arbitrary code. This includes a SOAP parameter tampering attack in which an attacker sends a SOAP message where the field values are other than what the server is likely to expect in order to precipitate non-standard server behavior.
  • HTTP Request Smuggling
    HTTP Request Smuggling results from the discrepancies in parsing HTTP requests between HTTP entities such as web caching proxies or application firewalls. Entities such as web servers, web caching proxies, application firewalls or simple proxies often parse HTTP requests in slightly different ways. Under specific situations where there are two or more such entities in the path of the HTTP request, a specially crafted request is seen by two attacked entities as two different sets of requests. This allows certain requests to be smuggled through to a second entity without the first one realizing it.
  • SQL Injection
    This attack exploits target software that constructs SQL statements based on user input. An attacker crafts input strings so that when the target software constructs SQL statements based on the input, the resulting SQL statement performs actions other than those the application intended. SQL Injection results from failure of the application to appropriately validate input. When specially crafted user-controlled input consisting of SQL syntax is used without proper validation as part of SQL queries, it is possible to glean information from the database in ways not envisaged during application design. Depending upon the database and the design of the application, it may also be possible to leverage injection to have the database execute system-related commands of the attackers' choice. SQL Injection enables an attacker to talk directly to the database, thus bypassing the application completely. Successful injection can cause information disclosure as well as ability to add or modify data in the database. In order to successfully inject SQL and retrieve information from a database, an attacker:
  • Using Slashes in Alternate Encoding
    This attack targets the encoding of the Slash characters. An attacker would try to exploit common filtering problems related to the use of the slashes characters to gain access to resources on the target host. Directory-driven systems, such as file systems and databases, typically use the slash character to indicate traversal between directories or other container components. For murky historical reasons, PCs (and, as a result, Microsoft OSs) choose to use a backslash, whereas the UNIX world typically makes use of the forward slash. The schizophrenic result is that many MS-based systems are required to understand both forms of the slash. This gives the attacker many opportunities to discover and abuse a number of common filtering problems. The goal of this pattern is to discover server software that only applies filters to one version, but not the other.
  • Inter-component Protocol Manipulation
    Inter-component protocols are used to communicate between different software and hardware modules within a single computer. Common examples are: interrupt signals and data pipes. Subverting the protocol can allow an adversary to impersonate others, discover sensitive information, control the outcome of a session, or perform other attacks. This type of attack targets invalid assumptions that may be inherent in implementers of the protocol, incorrect implementations of the protocol, or vulnerabilities in the protocol itself.
  • XML Injection
    An attacker utilizes crafted XML user-controllable input to probe, attack, and inject data into the XML database, using techniques similar to SQL injection. The user-controllable input can allow for unauthorized viewing of data, bypassing authentication or the front-end application for direct XML database access, and possibly altering database information.
  • Data Interchange Protocol Manipulation
    Data Interchange Protocols are used to transmit structured data between entities. These protocols are often specific to a particular domain (B2B: purchase orders, invoices, transport logistics and waybills, medical records). They are often, but not always, XML-based. Subverting the protocol can allow an adversary to impersonate others, discover sensitive information, control the outcome of a session, or perform other attacks. This type of attack targets invalid assumptions that may be inherent in implementers of the protocol, incorrect implementations of the protocol, or vulnerabilities in the protocol itself.
  • Using Leading 'Ghost' Character Sequences to Bypass Input Filters
    Some APIs will strip certain leading characters from a string of parameters. An adversary can intentionally introduce leading "ghost" characters (extra characters that don't affect the validity of the request at the API layer) that enable the input to pass the filters and therefore process the adversary's input. This occurs when the targeted API will accept input data in several syntactic forms and interpret it in the equivalent semantic way, while the filter does not take into account the full spectrum of the syntactic forms acceptable to the targeted API.
  • Exploiting Multiple Input Interpretation Layers
    An attacker supplies the target software with input data that contains sequences of special characters designed to bypass input validation logic. This exploit relies on the target making multiples passes over the input data and processing a "layer" of special characters with each pass. In this manner, the attacker can disguise input that would otherwise be rejected as invalid by concealing it with layers of special/escape characters that are stripped off by subsequent processing steps. The goal is to first discover cases where the input validation layer executes before one or more parsing layers. That is, user input may go through the following logic in an application: <parser1> --> <input validator> --> <parser2>. In such cases, the attacker will need to provide input that will pass through the input validator, but after passing through parser2, will be converted into something that the input validator was supposed to stop.
Access
VectorComplexityAuthentication
Impact
ConfidentialityIntegrityAvailability
Last major update 02-12-2022 - 18:14
Published 01-12-2022 - 08:15
Last modified 02-12-2022 - 18:14
Back to Top