CVE-2021-37677
Vulnerability from cvelistv5
Published
2021-08-12 22:35
Modified
2024-08-04 01:23
Summary
TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.
Impacted products
Vendor Product Version
tensorflow tensorflow Version: >= 2.5.0, < 2.5.1
Version: >= 2.4.0, < 2.4.3
Version: < 2.3.4
Create a notification for this product.
Show details on NVD website


{
   containers: {
      adp: [
         {
            providerMetadata: {
               dateUpdated: "2024-08-04T01:23:01.450Z",
               orgId: "af854a3a-2127-422b-91ae-364da2661108",
               shortName: "CVE",
            },
            references: [
               {
                  tags: [
                     "x_refsource_CONFIRM",
                     "x_transferred",
                  ],
                  url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26",
               },
               {
                  tags: [
                     "x_refsource_MISC",
                     "x_transferred",
                  ],
                  url: "https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764",
               },
            ],
            title: "CVE Program Container",
         },
      ],
      cna: {
         affected: [
            {
               product: "tensorflow",
               vendor: "tensorflow",
               versions: [
                  {
                     status: "affected",
                     version: ">= 2.5.0, < 2.5.1",
                  },
                  {
                     status: "affected",
                     version: ">= 2.4.0, < 2.4.3",
                  },
                  {
                     status: "affected",
                     version: "< 2.3.4",
                  },
               ],
            },
         ],
         descriptions: [
            {
               lang: "en",
               value: "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.",
            },
         ],
         metrics: [
            {
               cvssV3_1: {
                  attackComplexity: "LOW",
                  attackVector: "LOCAL",
                  availabilityImpact: "HIGH",
                  baseScore: 5.5,
                  baseSeverity: "MEDIUM",
                  confidentialityImpact: "NONE",
                  integrityImpact: "NONE",
                  privilegesRequired: "LOW",
                  scope: "UNCHANGED",
                  userInteraction: "NONE",
                  vectorString: "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
                  version: "3.1",
               },
            },
         ],
         problemTypes: [
            {
               descriptions: [
                  {
                     cweId: "CWE-20",
                     description: "CWE-20: Improper Input Validation",
                     lang: "en",
                     type: "CWE",
                  },
               ],
            },
         ],
         providerMetadata: {
            dateUpdated: "2021-08-12T22:35:10",
            orgId: "a0819718-46f1-4df5-94e2-005712e83aaa",
            shortName: "GitHub_M",
         },
         references: [
            {
               tags: [
                  "x_refsource_CONFIRM",
               ],
               url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26",
            },
            {
               tags: [
                  "x_refsource_MISC",
               ],
               url: "https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764",
            },
         ],
         source: {
            advisory: "GHSA-qfpc-5pjr-mh26",
            discovery: "UNKNOWN",
         },
         title: "Missing validation in shape inference for `Dequantize` in TensorFlow",
         x_legacyV4Record: {
            CVE_data_meta: {
               ASSIGNER: "security-advisories@github.com",
               ID: "CVE-2021-37677",
               STATE: "PUBLIC",
               TITLE: "Missing validation in shape inference for `Dequantize` in TensorFlow",
            },
            affects: {
               vendor: {
                  vendor_data: [
                     {
                        product: {
                           product_data: [
                              {
                                 product_name: "tensorflow",
                                 version: {
                                    version_data: [
                                       {
                                          version_value: ">= 2.5.0, < 2.5.1",
                                       },
                                       {
                                          version_value: ">= 2.4.0, < 2.4.3",
                                       },
                                       {
                                          version_value: "< 2.3.4",
                                       },
                                    ],
                                 },
                              },
                           ],
                        },
                        vendor_name: "tensorflow",
                     },
                  ],
               },
            },
            data_format: "MITRE",
            data_type: "CVE",
            data_version: "4.0",
            description: {
               description_data: [
                  {
                     lang: "eng",
                     value: "TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.",
                  },
               ],
            },
            impact: {
               cvss: {
                  attackComplexity: "LOW",
                  attackVector: "LOCAL",
                  availabilityImpact: "HIGH",
                  baseScore: 5.5,
                  baseSeverity: "MEDIUM",
                  confidentialityImpact: "NONE",
                  integrityImpact: "NONE",
                  privilegesRequired: "LOW",
                  scope: "UNCHANGED",
                  userInteraction: "NONE",
                  vectorString: "CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H",
                  version: "3.1",
               },
            },
            problemtype: {
               problemtype_data: [
                  {
                     description: [
                        {
                           lang: "eng",
                           value: "CWE-20: Improper Input Validation",
                        },
                     ],
                  },
               ],
            },
            references: {
               reference_data: [
                  {
                     name: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26",
                     refsource: "CONFIRM",
                     url: "https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26",
                  },
                  {
                     name: "https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764",
                     refsource: "MISC",
                     url: "https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764",
                  },
               ],
            },
            source: {
               advisory: "GHSA-qfpc-5pjr-mh26",
               discovery: "UNKNOWN",
            },
         },
      },
   },
   cveMetadata: {
      assignerOrgId: "a0819718-46f1-4df5-94e2-005712e83aaa",
      assignerShortName: "GitHub_M",
      cveId: "CVE-2021-37677",
      datePublished: "2021-08-12T22:35:10",
      dateReserved: "2021-07-29T00:00:00",
      dateUpdated: "2024-08-04T01:23:01.450Z",
      state: "PUBLISHED",
   },
   dataType: "CVE_RECORD",
   dataVersion: "5.1",
   "vulnerability-lookup:meta": {
      nvd: "{\"cve\":{\"id\":\"CVE-2021-37677\",\"sourceIdentifier\":\"security-advisories@github.com\",\"published\":\"2021-08-12T23:15:08.090\",\"lastModified\":\"2024-11-21T06:15:40.763\",\"vulnStatus\":\"Modified\",\"cveTags\":[],\"descriptions\":[{\"lang\":\"en\",\"value\":\"TensorFlow is an end-to-end open source platform for machine learning. In affected versions the shape inference code for `tf.raw_ops.Dequantize` has a vulnerability that could trigger a denial of service via a segfault if an attacker provides invalid arguments. The shape inference [implementation](https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) uses `axis` to select between two different values for `minmax_rank` which is then used to retrieve tensor dimensions. However, code assumes that `axis` can be either `-1` or a value greater than `-1`, with no validation for the other values. We have patched the issue in GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764. The fix will be included in TensorFlow 2.6.0. We will also cherrypick this commit on TensorFlow 2.5.1, TensorFlow 2.4.3, and TensorFlow 2.3.4, as these are also affected and still in supported range.\"},{\"lang\":\"es\",\"value\":\"TensorFlow es una plataforma de código abierto de extremo a extremo para el aprendizaje automático.&#xa0;En las versiones afectadas, el código de inferencia de forma para \\\"tf.raw_ops.Dequantize\\\" presenta una vulnerabilidad que podría desencadenar una denegación de servicio por medio de un error de seguridad si un atacante proporciona argumentos no válidos.&#xa0;La inferencia de forma [implementación] (https://github.com/tensorflow/tensorflow/blob/460e000de3a83278fb00b61a16d161b1964f15f4/tensorflow/core/ops/array_ops.cc#L2999-L3014) usa \\\"axis\\\" para seleccionar entre dos valores diferentes para \\\"minmax_rank \\\"que luego se usa para recuperar las dimensiones del tensor.&#xa0;Sin embargo, el código asume que el \\\"axis\\\" puede ser \\\"-1\\\" o un valor mayor que \\\"-1\\\", sin comprobación para los otros valores.&#xa0;Hemos solucionado el problema en GitHub commit da857cfa0fde8f79ad0afdbc94e88b5d4bbec764.&#xa0;La corrección será incluida en TensorFlow versión 2.6.0.&#xa0;También seleccionaremos este commit en TensorFlow versión 2.5.\"}],\"metrics\":{\"cvssMetricV31\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"3.1\",\"vectorString\":\"CVSS:3.1/AV:L/AC:L/PR:L/UI:N/S:U/C:N/I:N/A:H\",\"baseScore\":5.5,\"baseSeverity\":\"MEDIUM\",\"attackVector\":\"LOCAL\",\"attackComplexity\":\"LOW\",\"privilegesRequired\":\"LOW\",\"userInteraction\":\"NONE\",\"scope\":\"UNCHANGED\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"HIGH\"},\"exploitabilityScore\":1.8,\"impactScore\":3.6}],\"cvssMetricV2\":[{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"cvssData\":{\"version\":\"2.0\",\"vectorString\":\"AV:L/AC:L/Au:N/C:N/I:N/A:P\",\"baseScore\":2.1,\"accessVector\":\"LOCAL\",\"accessComplexity\":\"LOW\",\"authentication\":\"NONE\",\"confidentialityImpact\":\"NONE\",\"integrityImpact\":\"NONE\",\"availabilityImpact\":\"PARTIAL\"},\"baseSeverity\":\"LOW\",\"exploitabilityScore\":3.9,\"impactScore\":2.9,\"acInsufInfo\":false,\"obtainAllPrivilege\":false,\"obtainUserPrivilege\":false,\"obtainOtherPrivilege\":false,\"userInteractionRequired\":false}]},\"weaknesses\":[{\"source\":\"security-advisories@github.com\",\"type\":\"Secondary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-20\"}]},{\"source\":\"nvd@nist.gov\",\"type\":\"Primary\",\"description\":[{\"lang\":\"en\",\"value\":\"CWE-1284\"}]}],\"configurations\":[{\"nodes\":[{\"operator\":\"OR\",\"negate\":false,\"cpeMatch\":[{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.3.0\",\"versionEndExcluding\":\"2.3.4\",\"matchCriteriaId\":\"0F83C081-51CC-415F-A8C0-0A44C75E2CD6\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:*:*:*:*:*:*:*:*\",\"versionStartIncluding\":\"2.4.0\",\"versionEndExcluding\":\"2.4.3\",\"matchCriteriaId\":\"BD3F2BF8-EBA9-42BF-8F9B-D918B880B15A\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.5.0:*:*:*:*:*:*:*\",\"matchCriteriaId\":\"D03E99A7-4E3D-427D-A156-C0713E9FB02A\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc0:*:*:*:*:*:*\",\"matchCriteriaId\":\"70FA6E48-6C57-40CA-809F-4E3D07CBF348\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc1:*:*:*:*:*:*\",\"matchCriteriaId\":\"42187561-E491-434D-828C-F36701446634\"},{\"vulnerable\":true,\"criteria\":\"cpe:2.3:a:google:tensorflow:2.6.0:rc2:*:*:*:*:*:*\",\"matchCriteriaId\":\"C66B61C8-450A-4C5E-9174-F970D6DEE778\"}]}]}],\"references\":[{\"url\":\"https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Patch\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26\",\"source\":\"security-advisories@github.com\",\"tags\":[\"Vendor Advisory\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/commit/da857cfa0fde8f79ad0afdbc94e88b5d4bbec764\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Patch\"]},{\"url\":\"https://github.com/tensorflow/tensorflow/security/advisories/GHSA-qfpc-5pjr-mh26\",\"source\":\"af854a3a-2127-422b-91ae-364da2661108\",\"tags\":[\"Vendor Advisory\"]}]}}",
   },
}


Log in or create an account to share your comment.

Security Advisory comment format.

This schema specifies the format of a comment related to a security advisory.

UUIDv4 of the comment
UUIDv4 of the Vulnerability-Lookup instance
When the comment was created originally
When the comment was last updated
Title of the comment
Description of the comment
The identifier of the vulnerability (CVE ID, GHSA-ID, PYSEC ID, etc.).



Tags
Taxonomy of the tags.


Loading…

Loading…

Loading…

Sightings

Author Source Type Date

Nomenclature

  • Seen: The vulnerability was mentioned, discussed, or seen somewhere by the user.
  • Confirmed: The vulnerability is confirmed from an analyst perspective.
  • Exploited: This vulnerability was exploited and seen by the user reporting the sighting.
  • Patched: This vulnerability was successfully patched by the user reporting the sighting.
  • Not exploited: This vulnerability was not exploited or seen by the user reporting the sighting.
  • Not confirmed: The user expresses doubt about the veracity of the vulnerability.
  • Not patched: This vulnerability was not successfully patched by the user reporting the sighting.